How do I prove that A^B is orthogonal to A?

  • Thread starter Thread starter EmmaLemming
  • Start date Start date
  • Tags Tags
    Orthogonal
EmmaLemming
Messages
18
Reaction score
0
If A = (2,-2,1) and B = (2, 0, -1)

show by explicit calculation that;

i) A^B is orthogonal to A

ii) (A^B)^B lies in the same plane as A and B by expressing it as a linear combination of A and B

I'm using;
A^B = |A||B|sin θ

I know that when you do the cross product of two vectors the result will be a vector that is perpendicular to both and I can draw a diagram to demonstrate. However I can't show it by explicit calculation.

I thought maybe if I could prove that the angle between them was ∏/2...
 
Physics news on Phys.org
When you write A^B = |A||B|sin θ, that only gives the magnitude of A^B. You need to include the direction information as well. In three dimensions the dual of A^B is a vector, which is given by the cross product. So, for part A, try forming the dot product of (AxB) with A and see what this gives.
 
EmmaLemming said:
If A = (2,-2,1) and B = (2, 0, -1)

show by explicit calculation that;

i) A^B is orthogonal to A

ii) (A^B)^B lies in the same plane as A and B by expressing it as a linear combination of A and B

I'm using;
A^B = |A||B|sin θ

I know that when you do the cross product of two vectors the result will be a vector that is perpendicular to both and I can draw a diagram to demonstrate. However I can't show it by explicit calculation.

I thought maybe if I could prove that the angle between them was ∏/2...
Since you're talking about the cross product, why don't you write it as A x B?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top