How do I prove that both are equivalent limits

sooyong94
Messages
173
Reaction score
2

Homework Statement


If k is a positive integer, then show that
##\lim_{x\to\infty} (1+\frac{k}{x})^x = \lim_{x\to 0} (1+kx)^\frac{1}{x}##

Homework Equations


L'Hopitals rule, Taylor's expansion

The Attempt at a Solution


How should I begin? Should I prove that both has the same limit, or is there another way to work this question out?
 
Physics news on Phys.org
You can do the Taylor expansions to some number of terms for both limits and see - easily enough, that they converge to the same limit.
 
sooyong94 said:

Homework Statement


If k is a positive integer, then show that
##\lim_{x\to\infty} (1+\frac{k}{x})^x = \lim_{x\to 0} (1+kx)^\frac{1}{x}##

Homework Equations


L'Hopitals rule, Taylor's expansion

The Attempt at a Solution


How should I begin? Should I prove that both has the same limit, or is there another way to work this question out?
A simpler approach than the one suggested by QuantumQuest is use a simple substitution.
 
  • Like
Likes QuantumQuest and blue_leaf77
What substitution do you mean?
 
sooyong94 said:
What substitution do you mean?
When you compare
$$(1+\frac{k}{x})^x$$
and
$$(1+kx)^\frac{1}{x},$$
how can you go from one to the other?
 
sooyong94 said:
What substitution do you mean?
blue_leaf77 said:
When you compare
$$(1+\frac{k}{x})^x$$
and
$$(1+kx)^\frac{1}{x},$$
how can you go from one to the other?
Maybe think about them like this:
##(1+\frac{k}{x})^x##
and
##(1+ku)^\frac{1}{u}##
 
Will this work as a proof?

##L_1=\lim_{x\to\infty} (1+\frac{k}{x})^x##
##\ln L_1=\ln[\lim_{x\to\infty} (1+\frac{1}{k})^x]##
##\ln L_1=\lim_{x\to\infty} \ln[(1+\frac{1}{k})^x]####\ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-...##
##\ln(1+\frac{k}{x})=\frac{k}{x}-\frac{k^2}{2x^2}+\frac{k^3}{3x^3}-...##

##=\lim_{x\to\infty} x [\frac{k}{x}-\frac{k^2}{2x^2}+\frac{k^3}{3x^3}-...]##
##=\lim_{x\to\infty} [k-\frac{k}{2x^2}+\frac{k^2}{3x^3}-...]##
##=k##

Since
##\ln L_1=k##

Therefore
##L_1=e^k##

For the right hand side
##L_2=\lim_{x\to 0} (1+kx)^\frac{1}{x}##
##\ln L_2=\ln\lim_{x\to 0} (1+kx)^\frac{1}{x}##
##\ln L_2=\lim_{x\to 0} \ln (1+kx)^\frac{1}{x}##
##\ln L_2=\lim_{x\to 0} \frac{1}{x} \ln (1+kx)##
##\ln L_2=\lim_{x\to 0} \frac{1}{x} (kx-\frac{k^2x^2}{2}+\frac{k^3 x^3}{3}-...)##
##\ln L_2=\lim_{x\to 0} (k-\frac{k^2x}{2}+\frac{k^3 x^2}{3}-...)##
##\ln L_2=k##
##L_2=e^k##

Since both converges to the same limit, therefore both limits are equivalent.
 
Last edited:
sooyong94 said:
Will this work as a proof?

##L_1=\lim_{x\to\infty} (1+\frac{k}{x})^x##
##\ln L_1=\ln[\lim_{x\to\infty} (1+\frac{1}{k})^x]##
##\ln L_1=\lim_{x\to\infty} \ln[(1+\frac{1}{k})^x]####\ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-...##
##\ln(1+\frac{k}{x})=\frac{k}{x}-\frac{k^2}{2x^2}+\frac{k^3}{3x^3}-...##

##=\lim_{x\to\infty} x [\frac{k}{x}-\frac{k^2}{2x^2}+\frac{k^3}{3x^3}-...]##
##=\lim_{x\to\infty} [k-\frac{k}{2x^2}+\frac{k^2}{3x^3}-...]##
##=k##

Since
##\ln L_1=k##

Therefore
##L_1=e^k##

For the right hand side
##L_2=\lim_{x\to 0} (1+kx)^\frac{1}{x}##
##\ln L_2=\ln\lim_{x\to 0} (1+kx)^\frac{1}{x}##
##\ln L_2=\lim_{x\to 0} \ln (1+kx)^\frac{1}{x}##
##\ln L_2=\lim_{x\to 0} \frac{1}{x} \ln (1+kx)##
##\ln L_2=\lim_{x\to 0} \frac{1}{x} (kx-\frac{k^2x^2}{2}+\frac{k^3 x^3}{3}-...)##
##\ln L_2=\lim_{x\to 0} (k-\frac{k^2x}{2}+\frac{k^3 x^2}{3}-...)##
##\ln L_2=k##
##L_2=e^k##

Since both converges to the same limit, therefore both limits are equivalent.
That's an awful lot of work to prove something that's very straightforward. If ##x \to \infty## then ##\frac 1 x \to 0##. Does that give you an idea of the substitution to do?
 
sooyong94 said:
Will this work as a proof?

##L_1=\lim_{x\to\infty} (1+\frac{k}{x})^x##
##\ln L_1=\ln[\lim_{x\to\infty} (1+\frac{1}{k})^x]##
##\ln L_1=\lim_{x\to\infty} \ln[(1+\frac{1}{k})^x]####\ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-...##
##\ln(1+\frac{k}{x})=\frac{k}{x}-\frac{k^2}{2x^2}+\frac{k^3}{3x^3}-...##

##=\lim_{x\to\infty} x [\frac{k}{x}-\frac{k^2}{2x^2}+\frac{k^3}{3x^3}-...]##
##=\lim_{x\to\infty} [k-\frac{k}{2x^2}+\frac{k^2}{3x^3}-...]##
##=k##

Since
##\ln L_1=k##

Therefore
##L_1=e^k##

For the right hand side
##L_2=\lim_{x\to 0} (1+kx)^\frac{1}{x}##
##\ln L_2=\ln\lim_{x\to 0} (1+kx)^\frac{1}{x}##
##\ln L_2=\lim_{x\to 0} \ln (1+kx)^\frac{1}{x}##
##\ln L_2=\lim_{x\to 0} \frac{1}{x} \ln (1+kx)##
##\ln L_2=\lim_{x\to 0} \frac{1}{x} (kx-\frac{k^2x^2}{2}+\frac{k^3 x^3}{3}-...)##
##\ln L_2=\lim_{x\to 0} (k-\frac{k^2x}{2}+\frac{k^3 x^2}{3}-...)##
##\ln L_2=k##
##L_2=e^k##

Since both converges to the same limit, therefore both limits are equivalent.
You can also do it that way, although as Mark hinted above, substitution may lead to significant reduction in the steps needed to do the proof.
 
  • #10
Mark44 said:
That's an awful lot of work to prove something that's very straightforward. If ##x \to \infty## then ##\frac 1 x \to 0##. Does that give you an idea of the substitution to do?
u=1/x?
 
  • #11
I think I got the answer - do check if I commit any mistakes:

##x=\frac{1}{u}##, ##u=\frac{1}{x}##
When ##u \rightarrow \infty ##, ##x \rightarrow 0##

Then the limit can be rewritten as
##\lim_{u\to 0} (1+ku)^\frac{1}{u}##

Replacing u with x gives
##\lim_{x\to 0} (1+kx)^\frac{1}{x}##

Which is equal to the right hand side
 
  • #12
Yes that's right.
 
  • #13
Great! Can anyone mark this thread as solved? ;)
 
Back
Top