Telemachus
- 820
- 30
Homework Statement
Hi there. Well, the problem statement says: Calculate the arc length of the cardioid \rho=a(1+\cos\theta).
Homework Equations
So I used the formula for the arc length in the polar form:
\int_a^b \! \sqrt{(\rho)^2+(\displaystyle\frac{d\rho}{d\theta})^2} \, d\theta
The Attempt at a Solution
Then I get
\int_0^{2\pi} \! \sqrt{(a+a\cos\theta)^2+(-a\sin\theta)^2} \, d\theta
=\int_0^{2\pi} \! \sqrt{a^2+2a^2\cos\theta+a^2\cos^2\theta+a^2\sin^2\theta} \, d\theta
=\int_0^{2\pi} \! \sqrt{a^2(2\cos\theta+\cos^2\theta+\sin^2\theta)} \, d\theta
=\int_0^{2\pi} \! |a|\sqrt{2\cos\theta+\cos^2\theta+\sin^2\theta} \, d\theta=|a|\int_0^{2\pi} \!\sqrt{2\cos\theta+1} \, d\theta
I can't solve this integral, I don't know how to. Any help?
Last edited: