How Do Lorentz Group Commutation Relations Apply to Spin Matrices?

Markus Kahn
Messages
110
Reaction score
14

Homework Statement


Prove that the sets ##(S_{\mu\nu})_L## and ##(S_{kl})_R##, where
$$
\left( S _ { k \ell } \right) _ { L } = \frac { 1 } { 2 } \varepsilon _ { j k \ell } \sigma _ { j } = \left( S _ { k \ell } \right) _ { R } \quad\text{and}\quad \left( S _ { 0 k } \right) _ { L } = \frac { 1 } { 2 } i \sigma _ { k } = ( S ^ { 0 k }) _ { R }
$$
satisfy the commutation relation of the Lorentz group, namely
$$
\left[M_{\mu \nu}, M_{\rho \sigma}\right]=-\eta_{\mu \rho} M_{\nu \sigma}+\eta_{\mu \sigma} M_{\nu \rho}-\eta_{\nu \sigma} M_{\mu \rho}+\eta_{\nu \rho} M_{\mu \sigma}.
$$

The Attempt at a Solution


My attempt was straight forward
$$
\begin{align*}
[(S_{kl})_L, (S_{bc})_L]
&= \frac{1}{4}\varepsilon_{jkl}\varepsilon_{abc}[\sigma_j,\sigma_a] = \frac{1}{4}\varepsilon_{jkl}\varepsilon_{abc} (2i \varepsilon_{jau}\sigma_u) = \frac{i}{2}\varepsilon_{jkl}\varepsilon_{abc} \varepsilon_{jau}\sigma_u\\
&=\frac{i}{2} (\delta_{ka}\delta_{lu}-\delta_{ku}\delta_{al})\varepsilon_{abc}\sigma_u = \frac{i}{2}\varepsilon_{kbc}\sigma_l -\frac{i}{2} \varepsilon_{lbc}\sigma_k
\end{align*}
$$
but this seems to lead to nowhere. One of my problems here is that ##(S_{kl})_L## is only defined for ##k,l\in\{1,2,3\}## but ##M_{\mu\nu}## is defined for ##\mu,\nu\in\{0,\dots,3\}##... I'm not sure how to make sense of this but I honestly also don't know where I made a mistake in the above calculation...
 
Physics news on Phys.org
Markus Kahn said:
My attempt was straight forward
$$
\begin{align*}
[(S_{kl})_L, (S_{bc})_L]
&= \frac{1}{4}\varepsilon_{jkl}\varepsilon_{abc}[\sigma_j,\sigma_a] = \frac{1}{4}\varepsilon_{jkl}\varepsilon_{abc} (2i \varepsilon_{jau}\sigma_u) = \frac{i}{2}\varepsilon_{jkl}\varepsilon_{abc} \varepsilon_{jau}\sigma_u\\
&=\frac{i}{2} (\delta_{ka}\delta_{lu}-\delta_{ku}\delta_{al})\varepsilon_{abc}\sigma_u = \frac{i}{2}\varepsilon_{kbc}\sigma_l -\frac{i}{2} \varepsilon_{lbc}\sigma_k
\end{align*}
$$

I find working with the Levi-Civita symbols extremely tedious and error-prone, but I think that's correct. You can check for a couple of special cases:

##[(S_{xy})_L, (S_{yz})_L] = [i/2 \sigma_z, i/2 \sigma_x] = (-1/4) (- 2 i ) \sigma_y = (i/2) \sigma_y##

Your formula gives:
##(i/2) \varepsilon_{xyz} \sigma_y - (i/2) \varepsilon_{yyz} \sigma_x##

which simplifies to the same thing.

but this seems to lead to nowhere. One of my problems here is that ##(S_{kl})_L## is only defined for ##k,l\in\{1,2,3\}## but ##M_{\mu\nu}## is defined for ##\mu,\nu\in\{0,\dots,3\}##... I'm not sure how to make sense of this but I honestly also don't know where I made a mistake in the above calculation...

##S_{\mu \nu}## is defined for all ##\mu## and ##\nu##. If ##\mu = \nu = 0##, then it's zero. If ##\mu = j ## and ##\nu = k## are both 1,2 or 3, then it's ##S_{jk}##. If ##\mu = 0## and ##\nu = j##, then it's ##S_{0j} = (i/2) \sigma_j##
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top