How Do Polar Coordinates Explain a Bead's Velocity on a Rotating Wheel?

AI Thread Summary
The discussion centers on a bead moving along a spoke of a rotating wheel, with the bead's velocity expressed in polar coordinates as ur + uωtθ. The confusion arises from the interpretation of the bead's position, as it appears to suggest that the bead could move indefinitely outward, exceeding the wheel's radius. Clarification indicates that the equation is valid only until the bead reaches the rim of the wheel, after which its motion would need to be reevaluated. The misunderstanding stems from not accounting for the bead's eventual limitation in movement due to the wheel's physical constraints. This highlights the importance of understanding the context and limitations of polar coordinate representations in mechanics.
Precipitation
Messages
2
Reaction score
0
Note: All bold and underlined variables in this post are base vectors

I was reading the book 'Introduction To Mechanics' by Kleppner and Kolenkow and came across an example I don't quite understand. The example is this: a bead is moving along the spoke of a wheel at constant speed u m/s. The wheel rotates with uniform angular velocity dθ/dt = ω radians per second about an axis fixed in space.
At t = 0 the spoke is along the x axis, and the bead is at the origin. The book then says that the velocity of the bead at time t in polar coordinates is ur + uωtθ. Elaborating, the text says "at time t, the bead is at radius ut on the spoke."

What I don't understand is why u can be used in this calculation without any modification. If the bead is at radius ut at time t then the velocity would increase indefinitely and the spoke would have a position vector longer than the wheel it was attached to, which obviously doesn't make sense. Am I misunderstanding something about polar coordinates/vectors here or am I misunderstanding the example?
 
Science news on Phys.org
Precipitation said:
Note: All bold and underlined variables in this post are base vectors

I was reading the book 'Introduction To Mechanics' by Kleppner and Kolenkow and came across an example I don't quite understand. The example is this: a bead is moving along the spoke of a wheel at constant speed u m/s. The wheel rotates with uniform angular velocity dθ/dt = ω radians per second about an axis fixed in space.
At t = 0 the spoke is along the x axis, and the bead is at the origin. The book then says that the velocity of the bead at time t in polar coordinates is ur + uωtθ. Elaborating, the text says "at time t, the bead is at radius ut on the spoke."

What I don't understand is why u can be used in this calculation without any modification. If the bead is at radius ut at time t then the velocity would increase indefinitely and the spoke would have a position vector longer than the wheel it was attached to, which obviously doesn't make sense. Am I misunderstanding something about polar coordinates/vectors here or am I misunderstanding the example?

Obviously, eventually the bead will reach the rim of the wheel. That equation is only valid until then.
 
PeroK said:
Obviously, eventually the bead will reach the rim of the wheel. That equation is only valid until then.

That makes sense. I was conceptualising it as the bead reversing direction as the wheel completed successive revolutions. Thanks for the help.
 
Thread 'A quartet of epi-illumination methods'
Well, it took almost 20 years (!!!), but I finally obtained a set of epi-phase microscope objectives (Zeiss). The principles of epi-phase contrast is nearly identical to transillumination phase contrast, but the phase ring is a 1/8 wave retarder rather than a 1/4 wave retarder (because with epi-illumination, the light passes through the ring twice). This method was popular only for a very short period of time before epi-DIC (differential interference contrast) became widely available. So...
I am currently undertaking a research internship where I am modelling the heating of silicon wafers with a 515 nm femtosecond laser. In order to increase the absorption of the laser into the oxide layer on top of the wafer it was suggested we use gold nanoparticles. I was tasked with modelling the optical properties of a 5nm gold nanoparticle, in particular the absorption cross section, using COMSOL Multiphysics. My model seems to be getting correct values for the absorption coefficient and...
Back
Top