How Do You Calculate Power from Torque and Angular Velocity?

  • Thread starter Thread starter Pablo
  • Start date Start date
  • Tags Tags
    Motor Power
AI Thread Summary
To calculate power from torque and angular velocity, the relevant equations are P = T * w, where T is torque and w is angular velocity. In this case, the motor runs at four revolutions per second with a torque of 20 Nm. The correct angular velocity is found by converting revolutions per second to radians per second, resulting in w = 4 * 2π. After correcting the calculations, the power is determined to be 500 watts, indicating that the initial calculation was incorrect due to confusion between frequency and angular frequency. Understanding the distinction between these terms is crucial for accurate power calculations.
Pablo
Messages
16
Reaction score
2

Homework Statement



Motor runs at a rate of four revolutions/sec has a torque of 20. What is it's power.

Homework Equations



T = (2π) / w
f = w / (2π)
w = 2πf

P = T * w
Power = Torque * angular velocity

The Attempt at a Solution


[/B]
T = 20 Nm
f = 4 * 2π = 8π
w = 2π * (8π) = 16π^2

P = 20 * (16π^2) = 3158 Watts

My answer is too big, and I am not sure what I am doing wrong.
 
Last edited:
Physics news on Phys.org
Pablo said:
f = 4 * 2π = 8π
w = 2π * (8π) = 16π^2
I think you're confusing frequency and angular frequency. You've ended up multiplying the given revolutions per second by 2π twice.

One revolution is 2π radians of angular displacement. So 4 revolutions per second is 4 x 2π radians per second and is the angular velocity, ω.
 
gneill said:
I think you're confusing frequency and angular frequency. You've ended up multiplying the given revolutions per second by 2π twice.

One revolution is 2π radians of angular displacement. So 4 revolutions per second is 4 x 2π radians per second and is the angular velocity, ω.
Ah okay, so when they say the frequency they mean the angular velocity right. So it'd be 500 watts.
 
  • Like
Likes berkeman
Pablo said:
Ah okay, so when they say the frequency they mean the angular velocity right. So it'd be 500 watts.
When they say "frequency" they mean "events per unit time". If the "events" in question happen to be rotations then you can interpret them as 2π radian angular displacements. From there you can calculate the angular velocity by multiplying the frequency by 2π.

Yes, 500 watts looks good.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top