How Do You Calculate Rope Tension with Different Angles in Physics?

  • Thread starter Thread starter Friendly Hobo
  • Start date Start date
  • Tags Tags
    Rope
AI Thread Summary
To calculate the tensions in the rope for a mountain climber resting between two cliffs, the climber's weight of 514 N and the angles of the ropes (65° and 80°) are crucial. The problem involves breaking down the tension forces into their components using static equilibrium equations. The equations ΣFx = 0 and ΣFy = 0 lead to relationships between the tensions T1 and T2, allowing for their calculation. After solving the equations, the tensions are found to be approximately T1 = 882.571 N and T2 = 812.171 N. The calculations appear correct, and the climber can confidently submit the solution.
Friendly Hobo
Messages
6
Reaction score
0

Homework Statement



A mountain climber, in the process of crossing between two cliffs by a rope, pauses to rest. She weighs 514 N. As the drawing shows, she is closer to the left cliff than to the right cliff, with the result that the tensions in the left and right sides of the rope are not the same. Find the tensions in the rope (a) to the left and (b) to the right of the mountain climber.

The rope coming from the left is 65* below the edge of the cliff. The rope from the right is 80* below the edge of the cliff.(* denotes degree symbol)

Homework Equations



ΣFnet = ma

The Attempt at a Solution



I'm really not sure how to go about this. The question is part of an online homework assignment, and I only have one attempt left for full credit. What I have done (obviously wrong):

Drew a free body diagram of two right triangles with the angles of the left one being 65*, 25*, 90* and the angles of the right one being 10*, 80*, 90*. I thought the answer was gotten by taking weight: 541N/sin(Θ) but have now found out this assumption was wrong. I'm thinking I am supposed to break the tension forces into their components now, but I'm not quite sure what to do with the components themselves. Any help would be appreciated.
 
Physics news on Phys.org
This is a statics problem. Do you know the two basic rules of statics problems? Also, you might want to post the diagram.
 
Im not sure if I know the two basic rules or not to be honest. I'd love to learn them though so I can hopefully get through these sorts of problems in the future without assistance. I've attached the diagram that is given in the online assignment.
 

Attachments

  • ch04p_102.gif
    ch04p_102.gif
    4.9 KB · Views: 911
I think I may have figured it out, but I want to get someone to check it for me before I submit. After breaking the two tensions forces, which I'll call T1 and T2 from here, I was able to work out a solution.

ΣFx = T1cos(25) - T2cos(10) = ma
a = 0 m/s^2 so

ΣFx = T1cos(25) - T2cos(10) = 0
T1cos(25) = T2cos(10)
T1 = [cos(10)/cos(25)]T2

ΣFy = T1sin(25) - T2sin(10) - w = ma
a = 0 m/s^2
ΣFy = T1sin(25) + T2sin(10) -w = 0

T1sin(25) + T2sin(10) = w

[cos(10)/cos(25)]T2 * sin(25) + T2sin(10) = w
(0.9848/0.9063) * 0.4226T2 + 0.1736T2 = 514N
T2 = 812.171N

T1 = [cos(10)/cos(25)]T2
T1 = (0.9848/0.9063)(812.171N)
T1 = 882.571N

Does this all look correct? It's my only shot at full credit and I don't want math blunders or poor assumptions on my part to mess it up!
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top