How Do You Calculate the Potential Difference to Accelerate a He+ Ion?

AI Thread Summary
To calculate the potential difference needed to accelerate a He+ ion from rest to a speed of 2,690,000 m/s, the relationship between kinetic energy and electric potential must be correctly applied. The kinetic energy (K) can be expressed as K = 1/2 mv^2, where m is the mass of the ion, and v is its final velocity. The correct formula to relate kinetic energy to potential difference (V) is Change in K = q * Change in V, where q is the charge of the ion. The calculations revealed that the potential difference required is approximately 150,000 V, but there was confusion regarding the mass used in the calculation. Clarification was needed on whether the ion in question was He+ or He+2, as this affects the charge and mass values used.
BuBbLeS01
Messages
602
Reaction score
0
Electric Potential Difference...Please HELP!

Homework Statement


What potential difference is needed to accelerate a He+ ion (charge +e, mass 4u) from rest to a speed of 2690000 m/s?


Homework Equations





The Attempt at a Solution


Change in V = Change in K
Change in V = 1/2 mv^2
But what dose mass = 4u mean? What is u?
 
Physics news on Phys.org
Oh ok...
so is the rest of the problem set up correctly?
So I do...
1/2 * (4 * 1.66x10^-27) * (2690000^2) = 2.4x10^-14 V
 
BuBbLeS01 said:
Oh ok...
so is the rest of the problem set up correctly?
So I do...
1/2 * (4 * 1.66x10^-27) * (2690000^2) = 2.4x10^-14 V

actually.. i think you have something fundamentally wrong with:

change in V = change in K

this is because, the equation is dimensionally incorrect. 'K' or it's change, has the units of energy, whereas 'V' has the units of 'Energy/Charge'.

your solution maybe right.. or i don't know what.. just explain to me why you took the above mentioned relation.

You need to think of this problem in terms of the Electric field? For a given potential difference, what is the field present? Or to think in the direction of the problem, what is the electric field required so that the necessary velocity is achieved?
 
I think maybe it should be...
Change in K = q*Change in V
 
BuBbLeS01 said:
I think maybe it should be...
Change in K = q*Change in V

and yes.. you're right. Now, just substitute the values of 'm', 'v', 'q' and find what 'V' comes out to be.

also.. don't use the terminology 'change in V'. 'V' in itself refers to the potential difference.

Change in 'K', basically means the total Work done [following by 'Work-Energy theorem']. And 'V' is defined as the amount of work done per unit charge. So what you effectively did was first get the amount of work required to accelerate the given particle and then equate it with the amount of potential that could provide such energy [or in other words, do this work].
 
Change in K = q*Change in V
(1/2 (6.6423x10^-24) * 26900000^2) / (1.6x10^-19) = V = 1.5x10^10 V
Is that right then?
 
Oh wait to many 0's is velocity...answer I got is 1.5x10^8 V
 
OMG...wrong number for mass lol...

(1/2 (6.6423x10^-27) * 2690000^2) / (1.6x10^-19) = V = 1.5x10^5 V
Is that right then?
 
  • #10
oh nooo its wrong :( I only have 1 try left...what did I do wrong?
 
  • #11
BuBbLeS01 said:
OMG...wrong number for mass lol...

(1/2 (6.6423x10^-27) * 2690000^2) / (1.6x10^-19) = V = 1.5x10^5 V
Is that right then?

well.. seems right to me..

also.. try not to double post. Use the [edit] button in the bottom right corner to edit ur latest reply in case u have to add something. Make a new reply only when somebody has already commented on something or ur replies are far apart. Your last 3 replies were less than 5 mins. apart. Just keeps the forums clean. No offense.

EDIT:

i can't see anything wrong with the above. Are you sure it's a He^+ ion and not a He^{+2} nucleus?
 
Last edited:
Back
Top