How Do You Calculate the Ricci Tensor for the AdS Metric in 4 Dimensions?

HamOnRye
Consider the AdS metric in D+1 dimensions
ds^{2}=\frac{L^{2}}{z^{2}}\left(dz^{2}+\eta_{\mu\nu}dx^{\mu}dx^{\nu}\right)
I wanted to calculate the Ricci tensor for this metric for D=3. ([\eta_{\mu\nu} is the Minkowski metric in D dimensions)
I have found the following Christoffel symbols
\Gamma^{t}_{tz}=\frac{L^{2}}{z^{3}}, \quad \Gamma^{x}_{xz}=\Gamma^{y}_{yz}=\Gamma^{z}_{zz}=-\frac{L^{2}}{z^{3}}
From this point I wanted to determine the Riemann tensor in order to finally determine the Ricci tensor.
What I've got the following contributing Riemann tensors
R^{x}_{zxz}, \quad R^{y}_{zyz},\quad R^{t}_{ztz}
I also noticed that if I have a z-coordinate in the upper index for the Riemann tensor it will be zero no matter what I choose for the lower indices.
My problem is as follows, based on symmetry, the above Riemann tensors should also be zero but I can't see how. Did I make a mistake with my Christoffel symbols or anywhere else?
Any help is appreciated!

Tim
 
Physics news on Phys.org
It seems that you made an error in the computation of the Christoffel symbols. They should be either zero or equal to +/- 1/z. See this CoCalc worksheet for the computation, as well as the expression of the Riemann and Ricci tensors.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top