Hotsuma
- 41
- 0
Homework Statement
Find the infimum and supremum of each of the following sets; state whether the infimum and supremum belong to the set E.
<br /> \item 1. ~~~~E={p/q \in \mathbf{Q} | p^2 < 5q^2 \mbox{ and } p,q >0}. \mbox{ Prove your result. }<br /> \item 2. ~~~~E={2-(-1)^n/n^2|n \in \mathbf{N}. \mbox { Just list your answers}.<br />
sup E - \epsilon < a \leq sup E.
<br /> \item 1. ~~~~ \mbox{Here I claim the supremum of E is }\frac{1}{\sqrt{5}}, \mbox{ in E, and the infimum of E is 0, which is not in Q}.<br /> \item \mbox{Proof: Assume p, q greater than 0. Then } p^2 < 5q^2 \Leftrightarrow p < \sqrt{5} q \Leftrightarrow s = sup E = p/q = \frac{1}{\sqrt{5}} \mbox{how do I prove the infimum part. Hmm...}<br /> \item 2. ~~~~ \mbox{inf E = 0, sup E = 2 (assume 0 in N). }<br />
Find the infimum and supremum of each of the following sets; state whether the infimum and supremum belong to the set E.
<br /> \item 1. ~~~~E={p/q \in \mathbf{Q} | p^2 < 5q^2 \mbox{ and } p,q >0}. \mbox{ Prove your result. }<br /> \item 2. ~~~~E={2-(-1)^n/n^2|n \in \mathbf{N}. \mbox { Just list your answers}.<br />
Homework Equations
sup E - \epsilon < a \leq sup E.
The Attempt at a Solution
<br /> \item 1. ~~~~ \mbox{Here I claim the supremum of E is }\frac{1}{\sqrt{5}}, \mbox{ in E, and the infimum of E is 0, which is not in Q}.<br /> \item \mbox{Proof: Assume p, q greater than 0. Then } p^2 < 5q^2 \Leftrightarrow p < \sqrt{5} q \Leftrightarrow s = sup E = p/q = \frac{1}{\sqrt{5}} \mbox{how do I prove the infimum part. Hmm...}<br /> \item 2. ~~~~ \mbox{inf E = 0, sup E = 2 (assume 0 in N). }<br />