How Do You Differentiate e^(x^(x^2))?

  • Thread starter Thread starter erjkism
  • Start date Start date
  • Tags Tags
    Derivative
erjkism
Messages
54
Reaction score
0
derivative of e^x^x^2??

can someone explain to me how this could be solved?

so far i have:
f(x)=e^x^x^2
lnf(x)= x^2lne^x)

(e and ln cancel?)

f'(x)/f(x)= (x^2)x
f'(x)= f(x) x^3

= (e^x^x^2)(x^3)??


is that right? or do i need to use the power rule or something?
 
Physics news on Phys.org
y=e^{x^{x^2}}
lny=x^{x^2}
use the fact that if Y=u^v
then \frac{1}{Y}\frac{dY}{dx}=\frac{v}{u}\frac{du}{dx}+\frac{dv}{dx}lnu
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top