How Do You Integrate (x^2)/(x-1)?

  • Thread starter Thread starter ziggie125
  • Start date Start date
  • Tags Tags
    Integral
ziggie125
Messages
13
Reaction score
0

Homework Statement



integral of (x^2)/(x-1)


The Attempt at a Solution



Thats all i need to know how to do for this question.
 
Physics news on Phys.org
Divide x2 by x - 1 to get a polynomial + a proper rational function.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top