How Do You Solve sin^2(x) + tan^2(x) = √2?

AI Thread Summary
The discussion revolves around solving the equation sin²(x) + tan²(x) = √2 using trigonometric identities. The initial steps involve substituting tan²(x) with sin²(x)/cos²(x) and simplifying the equation to form a quadratic in terms of sin²(x). Participants suggest that the problem can be approached by solving the resulting quadratic equation for sin²(x). The conversation highlights the importance of careful manipulation of trigonometric identities and encourages collaboration for further hints and corrections. The thread emphasizes the need for clarity in the steps taken to reach a solution.
ForceBoy
Messages
47
Reaction score
6

Homework Statement


The problem given is sin2(x) + tan2(x) = √2

2. Homework Equations


The relevant equations would be any trigonometric identities

The Attempt at a Solution



sin2(x) + tan2(x) = √2

sin2(x) + (sin2(x)/cos2(x) ) = √2

[ cos2(x) sin2(x) + sin2(x) ]/ cos2(x) = √2

[ (1- sin2(x)) sin2(x) + sin2(x)] / [ 1 - sin2(x) ] = √2

[ (2 - sin2(x) ) sin2(x) ] / [ 1 - sin2(x) ] = √2

(2 - sin2(x) ) tan2(x) = √2

tan2(x) = ( √2 / [ 2 - sin2(x) ] )

I take this and substitute into the first equation:

sin2(x) + ( √2 / [ 2 - sin2(x) ] ) = √2

( 2 - sin2(x) ) sin2(x) / [ 2 - sin2(x) ] + √2 / [ 2 - sin2(x) ] = √2

( 2 - sin2(x) ) sin2(x) + √2 / [ 2 - sin2(x) ] = √2

( 2 - sin2(x) ) sin2(x) + √2 = ( √2 ) 2 - sin2(x)

( 2 - sin2(x) ) sin2(x) + √2 = 2√2 - √2 sin2(x)

( 2 - sin2(x) ) sin2(x) = √2 - √2 sin2(x)

( 2 - sin2(x) ) sin2(x) = √2 (1 - sin2(x) )

( ( 2 - sin2(x) ) sin2(x) / (1 - sin2(x) ) )= √2Here is where I get stuck. I do not know what steps to take next. Please give me hints on this and do not hesitate to point out any mistakes in my work. They are very likely.
 
Physics news on Phys.org
ForceBoy said:

Homework Statement


The problem given is sin2(x) + tan2(x) = √2

2. Homework Equations


The relevant equations would be any trigonometric identities

The Attempt at a Solution



sin2(x) + tan2(x) = √2

sin2(x) + (sin2(x)/cos2(x) ) = √2

[ cos2(x) sin2(x) + sin2(x) ]/ cos2(x) = √2

[ (1- sin2(x)) sin2(x) + sin2(x)] / [ 1 - sin2(x) ] = √2

[ (2 - sin2(x) ) sin2(x) ] / [ 1 - sin2(x) ] = √2
I can follow you until here. What's next is a backward substitution which I don't think will get you very far. At least the next steps are what could be done more easily, because you already have a quadratic equation in ##t := \sin^2(x)## which can be solved.
(2 - sin2(x) ) tan2(x) = √2

tan2(x) = ( √2 / [ 2 - sin2(x) ] )

I take this and substitute into the first equation:

sin2(x) + ( √2 / [ 2 - sin2(x) ] ) = √2

( 2 - sin2(x) ) sin2(x) / [ 2 - sin2(x) ] + √2 / [ 2 - sin2(x) ] = √2

( 2 - sin2(x) ) sin2(x) + √2 / [ 2 - sin2(x) ] = √2

( 2 - sin2(x) ) sin2(x) + √2 = ( √2 ) 2 - sin2(x)

( 2 - sin2(x) ) sin2(x) + √2 = 2√2 - √2 sin2(x)

( 2 - sin2(x) ) sin2(x) = √2 - √2 sin2(x)

( 2 - sin2(x) ) sin2(x) = √2 (1 - sin2(x) )

( ( 2 - sin2(x) ) sin2(x) / (1 - sin2(x) ) )= √2Here is where I get stuck. I do not know what steps to take next. Please give me hints on this and do not hesitate to point out any mistakes in my work. They are very likely.
 
  • Like
Likes Charles Link, ForceBoy, SunThief and 1 other person
Wow, I didn't see that! Thank you very much. This was really helpful.
 
Back
Top