- 6,735
- 2,431
Homework Statement
Evaluate:
\int _{c} \dfrac{1- Log z}{z^{2}} dz
where C is the curve:
C : z(t) = 2 + e^{it} ; - \pi / 2 \leq t \leq \pi / 2
Homework Equations
I know the independance of path in a domain where f(z) is analytical, but I tried the standard parametrization just to beging with someting.
The Attempt at a Solution
z^{2} = 4 + 4e^{it} + e^{2it}
Log(2 + e^{it} ) = \frac{1}{2} \ln (5 + \cos t) +it
dz = ie^{it} dt
i \int _{- \pi / 2} ^{\pi / 2} \dfrac{1 -\frac{1}{2} \ln (5 + \cos t) -it }{4 + 4e^{it} + e^{2it}}e^{it} dt
lol iam lost