How Do You Solve This Second-Order Linear Differential Equation?

  • Thread starter Thread starter fan_103
  • Start date Start date
fan_103
Messages
24
Reaction score
0
x^2d^2y/dx^2+3xdy/dx+5y=3x
I don't know where to start with the question ,can anyone here help me pleasez.
 
Last edited:
Physics news on Phys.org
Do you know how to solve x^2 y'' + axy' + by =0 in general?

Hint: Use the substitution x = e^z
 
Thanks for the help much appreciated..I have not yet done this chapter.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top