How Does a Damped Oscillator Behave with Different Initial Conditions?

  • Thread starter Thread starter coffeem
  • Start date Start date
  • Tags Tags
    Damped Oscillator
AI Thread Summary
The discussion focuses on the behavior of a damped oscillator described by the motion equation x(double dot) + 2x(dot) + 2 = 0. It establishes that the solution x(t) = (A + Bt)e^-t satisfies the equation, with A and B as constants determined by initial conditions. At t = 0, the position x equals A, leading to A being equal to the initial displacement Ao. To find B, the velocity function v(t) must be derived from x(t), using the initial speed Uo to establish the relationship. The final step involves graphing the function based on the values of Ao and Uo, illustrating different behaviors of the oscillator under varying conditions.
coffeem
Messages
91
Reaction score
0
The equation for motion for a damped oscillator is:

x(double dot) + 2x(dot) + 2 = 0

a) Show that x(t)= (A + Bt)e^-t

Where A and B are constants, satisfies the equation for motion given above.

b) At time t = 0, the oscillator is released at distance Ao from equilibrium and with a speed Uo towards the equilibrium position. Find A and B for these initial conditions.

c) Sketch the t-dpendence of x for the case in which Ao = 20m and Uo =25m/s and the case in which Ao = 20m and Uo =10m/s.


MY ATTEMPT AT ANSWER

a) Can do fine. No probems with this.

b) Setting t = 0 gives x = A

So I am assuming as x = Ao then A - Ao.

However I do not know how to get further than this.

c) Dont know how to do this. Am assuming that once you have the relationships between Ao, Uo, A and B then you will be able to just plug the numbers in and graph the function.


Thanks for any help.
 
Physics news on Phys.org
Hi cofeem,

You found that A=Ao by setting t=0 in the x(t) expression and knowing that it must equal Ao.

The other initial condition deals with the velocity. Since you know x(t), how do you find v(t)? What do you get? Then you can do the same thing with v(t) to find B that you did with x(t) to find A.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top