How Does a Delta Function Potential Affect a Quantum Particle's Radial Equation?

maria clara
Messages
56
Reaction score
0

Homework Statement


write the radial equation for a particle with mass m and angular momentum l=0 which is under the influence of the following potential:
V(r)=-a*delta(r-R)
a,R>0
write all the conditions for the solution of the problem.

Homework Equations



Schroedinger's equation:
Hu=Eu
Hamiltonian: H=p/2m +V = pr/2m+L^2/2mr^2+V(r)

The Attempt at a Solution



since the angular momentum is zero, the radial equation appears as:
(-hbar/2m)(d^2u/dr^2)-a*delta(r-R)u=Eu
the conditions I can think of are:
1) continuity of u
2) u(infinity)= 0 (for u to be square integrable)
3) from integration of Schroedinger's equation on the interval [R-epsilon, R+epsilon] the jump in the first derivative of u at r=R should be -2mau(R)/hbar^2

but there is another condition according to the answers, that is, u(0)=0.
where does this condition come from?
 
Physics news on Phys.org
anyone?:confused:
 
you mean why u(0) = 0 ?

This is due to that \Psi (r) = \frac{u(r)}{r} so u(r) must go to zero faster than r, in order to have a bounded wave function \Psi (r).
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top