MHB How Does Air Resistance Affect Power in Rotational Motion?

cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
A sphere of mass 1.9 kg and radius 0.5 m is attached to the end of a massless rod of length 3.0 m. The rod rotates about an axis that is at the opposite end of the sphere (see below). The system rotates horizontally about the axis at a constant 422 rev/min. After rotating at this angular speed in a vacuum, air resistance is introduced and provides a force 0.23 N on the sphere opposite to the direction of motion. What is the power (in W) provided by air resistance to the system 167.0 s after air resistance is introduced? (Enter the magnitude.)
10-8-p-102.png


Work
$$I_(new)=2/5mR^2+M(3.5)^2$$= 23.465
$$3.5F_f=I\alpha$$=.034306
$$\alpha=3.5F_f/I$$
$$\omega_0=2\pi/60*422rpm$$=44.19
$$\omega=\omega_0+\alpha*167$$=49.878
$$P=F_f*\omega$$=11.4719

What did I done wrong? Thanks
 
Last edited:
Mathematics news on Phys.org
$P = \tau \cdot \omega$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top