How Does Changing Wavelength Affect Fringe Spacing in a Double-Slit Experiment?

  • Thread starter Thread starter frederickcan
  • Start date Start date
  • Tags Tags
    Interference Light
AI Thread Summary
In the double-slit experiment, changing the wavelength from 600 nm to 400 nm affects the fringe spacing on the viewing screen. The fringe spacing equation, delta y = wavelength x L / d, is correctly identified, but the calculation needs clarification regarding the value of L, which remains constant. To find the new fringe spacing for 400 nm, one can derive L/d from the initial conditions and substitute it into the equation for the second wavelength. The calculations should yield the correct fringe spacing without introducing additional unknowns. Understanding the relationship between wavelength and fringe spacing is crucial for accurate results in this experiment.
frederickcan
Messages
8
Reaction score
0

Homework Statement



A double-slit experiment is performed with light of wavelength 600 nm. The bright interference fringes are spaced 1.8 mm apart on the viewing screen. What will the fringe spacing be if the light is changed to a wavelength of 400 nm?

Homework Equations



Fringe spacing equation
delta y = wavelength x L / d

The Attempt at a Solution




I tried to solve the fringe spacing for the wavelength of 600 nm by:

600 x 10^-9 m / .0018 m = 3.33E-4

then

plugged in the 3.33E-4 to solve what the spacing would be for 400 nm by:

dividing 400 x 10^-9 m / 3.33E-4 = 1200000

I think I'm interpreting the fringe spacing equation wrong, and I'm not sure where.
 
Physics news on Phys.org
Check your math; your equations are right, but you made a trivial calculation error.
 
The only thing is I'm confused about L. The question didn't provide a value for L, and I have two unknowns (L, and the fringe spacing) so I feel like I'm using the wrong equation. However, because I couldn't find a better equation I set L to 1.

(Also, thank you for your help.)
 
In the problem L and d remain the same. So you can write equation for two wavelengths.
λ1 = x1*L/d...(1)
λ2 = x2*L/d...(2) From the first equation find L/d.
Substitute this value in the second equation.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top