How Does EMF Induce in a Solenoid Despite Minimal Flux Cutting?

AI Thread Summary
EMF induction in a solenoid occurs even with minimal flux cutting due to the magnetic field's configuration. When a magnet approaches a solenoid, the flux increases, and while the motion may be parallel to the magnetic field, the flux completes a loop outside the solenoid, inducing current. The discussion highlights that in an ideal transformer, most of the magnetic flux remains within the iron core, yet significant power transfer occurs to the secondary winding. The magnetic field can be viewed as toroidal, allowing for some flux lines to intersect the windings, even if they are largely contained. Ultimately, the loop of flux must encompass the windings to effectively induce EMF.
QwertyXP
Messages
66
Reaction score
0
1. Assuming that both the windings of a transformer is wrapped around an iron core, how is an EMF induced in the secondary winding - isn't it necessary for flux to cut through the winding in order to induce an EMF? The flux cutting through the winding would apparently be very low..as most of it is contained inside the iron core.

2. If a magnet approaches a solenoid along its horizontal axis, the flux cutting through the solenoid will increase. However, the motion is parallel to the direction of magnetic field. Will an emf be induced across the solenoid?
 
Engineering news on Phys.org
The flux of a solenoid must complete a loop. Yes the flux inside the solenoid is largely contained in the iron core. However the flux also leaves the iron core and completes its loop outside the solenoid. When the field is reversed, it must pass through the windings inducing a current.

Do you mean if a magnet approaches a solenoid in line with the coil and perhaps even enters the solenoid? If so, then consider the magnetic field a torus and you will see that the field must cross the windings. If the magnet approaches the solenoid perpendicular to the center of the coil, the flux lines will cross the windings but the field intersecting the coil on one side of the coil will cancel the field on the other side and very little current will be induced.
 
Last edited:
Thanks, skeptic2.

I didn't get the first point. As most of the flux from the primary remains inside the iron core while completing its loop and very little of it cuts the secondary winding (in an ideal transformer all the flux should remain inside the core), very little power should be transferred to the secondary winding - but in a transformer nearly all the power from the primary is transferred...?

Magnet approaching a solenoid in line with the coil: i think I've understood. The magnetic field is torroidal and hence even when the magnet is far away, the field lines cutting through the upper portion of the solenoid coil would be tilted slightly upwards and those passing through the lower portion would have a slight downward direction. Is that what u meant to say?
 
QwertyXP said:
As most of the flux from the primary remains inside the iron core while completing its loop and very little of it cuts the secondary winding (in an ideal transformer all the flux should remain inside the core), very little power should be transferred to the secondary winding - but in a transformer nearly all the power from the primary is transferred...?

Not only must the flux complete a loop, the loop must contain the windings with the current that creates the flux. In other words the loop must go around the windings. The loop of the flux cannot be completely contained by a core that only passes through the center of the solenoid.
 
Very basic question. Consider a 3-terminal device with terminals say A,B,C. Kirchhoff Current Law (KCL) and Kirchhoff Voltage Law (KVL) establish two relationships between the 3 currents entering the terminals and the 3 terminal's voltage pairs respectively. So we have 2 equations in 6 unknowns. To proceed further we need two more (independent) equations in order to solve the circuit the 3-terminal device is connected to (basically one treats such a device as an unbalanced two-port...
suppose you have two capacitors with a 0.1 Farad value and 12 VDC rating. label these as A and B. label the terminals of each as 1 and 2. you also have a voltmeter with a 40 volt linear range for DC. you also have a 9 volt DC power supply fed by mains. you charge each capacitor to 9 volts with terminal 1 being - (negative) and terminal 2 being + (positive). you connect the voltmeter to terminal A2 and to terminal B1. does it read any voltage? can - of one capacitor discharge + of the...
Back
Top