Demystifier said:
Would you agree with me (see post #23) that non-relativistic QFT can be derived from relativistic QFT?
Only in a very vague sense.
Nonrelativistic QFT is usually taken to be the statistical mechanics of gases, liquids, and solids made of nuclei and electrons, with electromagnetic interaction modeled as external field only. (To handle photons needs at least a partially relativistic setting.) As such it shares the abstract features of relativistic QFT, except that it takes the limit ##c\to\infty## to simplify the dynamics. However, the fields appearing in nonrelativistic QFT (the electron field and one interacting spacetime field for every nuclide appearing in the model - or an external periodic potential if none is modeled) are very different from those appearing in relativistic QFT (one space-time field for every elementary particle). I haven't seen any derivation of the former from the latter. There is a chain of reasoning going from quarks to hadrons to nuclides, considered as
asymptotic free fields, but as far as I have seen none that would allow me to say that
interacting nonrelativistic QFT is derivable from the relativistic version. It is regarded as an effective theory for the latter, but not because of a derivation but based on plausibility reasoning only.
Demystifier said:
Further, would you agree with me that non-relativistic QM can be derived from non-relativistic QFT?
No; I completely disagree!
It only works in the opposite direction, presented in all textbooks on statistical mechanics, by a two-step process of generalization and abstraction during which some features of QM are lost. First one generalizes the setting of QM by turning the number of particles - which in QM is a parameter only - into an operator acting on Fock space whose spectrum are the nonnegative numbers. Then one gets rid of all measurement issues by replacing the Born rule by the definition of ensemble expectations via ##\langle X\rangle:=\mbox{tr} ~\rho X##, which no longer refers to observation and measurement. This allows one to consider arbitrarily large systems - which constitutes the second generalization - and the thermodynamic limit of infinite volume (which is needed to make it a QFT proper). Then one is at the level of field expectations and field correlations, which are the subject of QFT.
Note that the notions of observation and measurement - the most controversial features of QM - are lost during this abstraction process.
Because of this loss, one can go only part of the way back if one tries to reverse the direction, going from nonrelativistic QFT to QM. One can consider a fixed number of particles and restrict to the eigenspace of the number operator with fixed eigenvalue ##N##. This produces (restricting for simplicity to a single scalar field) the Hilbert space of totally symmetrized wave functions in ##N## 3-dimensional position coordinates ##x_i##. On this Hilbert space, only those operators (constructed from the field operators in Fock space) have a meaning that commute with the number operator.
This is not enough to construct position and momentum operators for the individual particles but only for their center of mass. One sees already here that one needs to make additional assumptions to recover traditional quantum mechanics.
Worse, since in the QFT description both observers and measurements are absent,
one has to introduce observers and measurements and their properties by hand! In particular, the Born rule of QM, that tells what happens in a sequence of ideal measurements, must be postulated in addition to what was inherited from QFT! Unless the concept of observers and measurement are fully defined in quantum mechanical terms so that one could deduce their properties. While this seems not impossible, it certainly hasn't been done so far!