How Does the Biot Number Affect Lumped System Analysis Accuracy?

AI Thread Summary
The discussion centers on the impact of the Biot number on the accuracy of lumped system analysis in heat transfer. A Biot number less than 0.1 indicates that the lumped capacitance method is valid, while values between 0.5 and 0.8 raise concerns about accuracy. There is no known correction factor for larger Biot numbers, and using the conduction equation is recommended for critical accuracy. A method involving the asymptotic internal Nusselt number can enhance results by providing an overall heat transfer coefficient that accommodates a broader range of Biot numbers. This approach yields accurate results with minimal additional effort, making it a practical solution for heat transfer analysis.
JohnJohn8
Messages
5
Reaction score
0
Hello all,

I have a question regarding heat transfer. When the Biot number is small (<0.1) a mass can be regarded as lumped. Which means that the temperature is the same everywhere in the mass. Now if the Biot number is larger than 0.1 (say around 0.5-0.8) and I still do a lumped system analysis. Is there a relation which gives the error? And is there like a factor which compensates for this error?

Thanks in advance.
 
Engineering news on Phys.org
The Biot number is used to determine if the lumped capacitance method is a valid approximation of a transient problem that involves convection about a solid. When the Biot number is much less than 1, the resistance to conductive heat transfer within the solid is much less than the resistance to convective heat transfer across the fluid boundary layer.

Put another way, if the Biot number is much less than 1 then the temperature gradient across the solid is much less than the temperature gradient across the fluid boundary layer. Given two temperature gradients, if one is much larger than the other then the smaller one can be assumed to have a negligible effect on the system, and so it may be disregarded.

To answer your question, I'm not aware of any "correction factor" for using the lumped capacitance method with larger Biot numbers. In the case that you have a larger Biot number and accuracy is critical, you may be better off using the conduction equation to calculate the temperature gradient in the solid...
 
There is a trick way to do what you want to do. If the Biot number is on the low side (as in the cases you have identified), then the surface temperature is changing very slowly, and thus the heat flux to the surface is changing very slowly. So the object is receiving nearly a constant heat flux over long intervals of the process time. You can look up the asymptotic internal Nussult number for your object under constant heat flux conditions. This is tabulated in many books. You then use the corresponding internal heat transfer coefficient for the object in conjunction with the external heat transfer coefficient from the Biot number to obtain an overall heat transfer coefficient. You then use this overall heat transfer coefficient with your lumped parameter model. Try this out and see how the results compare with the results in books. I think that you will be very pleased that it gives pretty accurate results over a much larger range of Biot numbers than obtained by just including the external heat transfer coefficient, and with very little additional effort.
 
Chestermiller said:
There is a trick way to do what you want to do. If the Biot number is on the low side (as in the cases you have identified), then the surface temperature is changing very slowly, and thus the heat flux to the surface is changing very slowly. So the object is receiving nearly a constant heat flux over long intervals of the process time. You can look up the asymptotic internal Nussult number for your object under constant heat flux conditions. This is tabulated in many books. You then use the corresponding internal heat transfer coefficient for the object in conjunction with the external heat transfer coefficient from the Biot number to obtain an overall heat transfer coefficient. You then use this overall heat transfer coefficient with your lumped parameter model. Try this out and see how the results compare with the results in books. I think that you will be very pleased that it gives pretty accurate results over a much larger range of Biot numbers than obtained by just including the external heat transfer coefficient, and with very little additional effort.
Thank you very much for your answer, but what do you mean by the internal asymptotic Nusselt number?
 
Last edited:
JohnJohn8 said:
Thank you very much for your answer, but what do you mean by the internal asymptotic Nusselt number?
In the case of conductive heat transfer to a cylinder (for example) under a constant wall heat flux, the temperature gradient at the wall at any instant of time is related to the heat flux at the wall by:$$q=-k\left(\frac{\partial T}{\partial r}\right)_{r=R}$$It is also possible to define an instantaneous internal heat transfer coefficient h for this system by:$$q=h(T_w-\bar{T})$$ where ##T_w## is the instantaneous temperature at the wall at time t, and ##\bar{T}## is the instantaneous average temperature of the cylinder. The instantaneous internal Nussult number at any time t can be defined as:$$Nu=\frac{hD}{k}$$ In this system, after a relatively short time, the difference between the wall temperature and the average bar temperature ##(T_w-\bar{T})## is found to a approach a constant (asymptotic) value. This then implies that h and Nu also approach constant values. If I remember correctly, for conductive heat transfer to a cylinder under a constant wall heat flux, the asymptotic internal Nussult number is equal to 48/11.
 
  • Like
Likes JohnJohn8
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
Back
Top