MHB How Does the Correspondence Theorem for Rings Prove Maximal Ideals?

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Rings Theorem
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Joseph J. Rotman's book: Advanced Modern Algebra (AMA) and I am currently focused on Section 5.1 Prime Ideals and Maximal Ideals ...

I need some help with understanding the proof of Proposition 5.9 ... ...Proposition 5.9 reads as follows:
View attachment 5934 In the proof of Proposition 5.9, Rotman writes:

" ... ... The Correspondence Theorem for Rings shows that $$I$$ is a maximal ideal if and only if $$R/I$$ has no ideals other than $$(0)$$ and $$R/I$$ itself ... ... "

My question is: how exactly (in clear and simple terms) does Rotman's statement of the Correspondence Theorem for Rings lead to the statement that "$$I$$ is a maximal ideal if and only if $$R/I$$ has no ideals other than $$(0)$$ and $$R/I$$ itself" ... ...

Hope that someone can help ...

Peter

============================================================

The above post refers to Rotman's statement of the Correspondence Theorem for Rings, so I am providing a statement of that theorem and its proof, as follows:View attachment 5936
 
Physics news on Phys.org
Peter said:
I am reading Joseph J. Rotman's book: Advanced Modern Algebra (AMA) and I am currently focused on Section 5.1 Prime Ideals and Maximal Ideals ...

I need some help with understanding the proof of Proposition 5.9 ... ...Proposition 5.9 reads as follows:
In the proof of Proposition 5.9, Rotman writes:

" ... ... The Correspondence Theorem for Rings shows that $$I$$ is a maximal ideal if and only if $$R/I$$ has no ideals other than $$(0)$$ and $$R/I$$ itself ... ... "

My question is: how exactly (in clear and simple terms) does Rotman's statement of the Correspondence Theorem for Rings lead to the statement that "$$I$$ is a maximal ideal if and only if $$R/I$$ has no ideals other than $$(0)$$ and $$R/I$$ itself" ... ...

Hope that someone can help ...

Peter

============================================================

The above post refers to Rotman's statement of the Correspondence Theorem for Rings, so I am providing a statement of that theorem and its proof, as follows:
Maybe I should not be responding to my own post but I have been reflecting on the question in the above post and now suspect that the answer is quite simple and goes along the lines ... ... as follows:

$$I$$ maximal

$$\Longrightarrow$$ there are no ideals in $$R$$ that contain $$I $$ except $$R$$ itself ...

$$\Longrightarrow$$ there are no ideals in $$ R/I$$ (except $$R/I$$ itself) since there exists a bijection between the set of ideals of $$R/I$$ and the ideals of $$R$$ containing $$I$$ ... ...

BUT ... it seems that the only ideal in $$R/I$$ is $$R/I$$ itself ... but how do we explain the existence of $$(0)$$ ...?

Seems that I still need some help ... ...

Peter
 
Given $I\lhd R$ (notation: $I$ is ideal in $R$), $I$ is proper, i.e., $I\neq (0)$ and $I\neq R$.
If $J\lhd R$, define $\overline J = \{a+I \mid a\in J \}$, you can prove that $\overline J = J/I$.

Define $A= \{ J\lhd R \mid I\subset J \}$ and $B=\{ K \lhd R/I \}$.

The Correspondence Theorem says that there is a bijection $\phi : A\to B$ given by $J\mapsto \overline J=J/I$.

What does this say?
a) If we have an ideal $K\lhd R/I$ then there exists an ideal $J\lhd R$ with $I\subset J$ and $J/I=K$

b) If we have an ideal $J\lhd R$ such that $I\subset J$ then $J/I \lhd R/I$

Let $I\lhd R$ be maximal, then $I$ is proper and there are no ideals between $I$ and $R$.
This means that $A$ consists of two elements: $A= \{ I, R \}$.
Therefore, $B$ consists of two elements: $B=\{ \phi (I), \phi (R) \}$.
We have $\phi (I) = (0)$ and $\phi (R) = R/I$. Thus $B=\{ (0), R/I \}$.
$B$ is the set of ideals in $R/I$, so $R/I$ has no other ideals than $(0)$ and $R/I$.

Conversely, $R/I$ has no other ideals than $(0)$ and $R/I$, i.e., $B=\{ (0), R/I \}$.
Then $A= \{ \phi ^{-1} ((0)), \phi ^{-1} (R/I) \} = \{ I, R \}$

Can you fill in the the details and apply example 5.8, now? I am going to have a break. If necessary, we continue later.
 
steenis said:
Given $I\lhd R$ (notation: $I$ is ideal in $R$), $I$ is proper, i.e., $I\neq (0)$ and $I\neq R$.
If $J\lhd R$, define $\overline J = \{a+I \mid a\in J \}$, you can prove that $\overline J = J/I$.

Define $A= \{ J\lhd R \mid I\subset J \}$ and $B=\{ K \lhd R/I \}$.

The Correspondence Theorem says that there is a bijection $\phi : A\to B$ given by $J\mapsto \overline J=J/I$.

What does this say?
a) If we have an ideal $K\lhd R/I$ then there exists an ideal $J\lhd R$ with $I\subset J$ and $J/I=K$

b) If we have an ideal $J\lhd R$ such that $I\subset J$ then $J/I \lhd R/I$

Let $I\lhd R$ be maximal, then $I$ is proper and there are no ideals between $I$ and $R$.
This means that $A$ consists of two elements: $A= \{ I, R \}$.
Therefore, $B$ consists of two elements: $B=\{ \phi (I), \phi (R) \}$.
We have $\phi (I) = (0)$ and $\phi (R) = R/I$. Thus $B=\{ (0), R/I \}$.
$B$ is the set of ideals in $R/I$, so $R/I$ has no other ideals than $(0)$ and $R/I$.

Conversely, $R/I$ has no other ideals than $(0)$ and $R/I$, i.e., $B=\{ (0), R/I \}$.
Then $A= \{ \phi ^{-1} ((0)), \phi ^{-1} (R/I) \} = \{ I, R \}$

Can you fill in the the details and apply example 5.8, now? I am going to have a break. If necessary, we continue later.
Thanks for for your assistance, Steenis ... most helpful ...

Reflecting on what you have said ...

Thanks again,

Peter
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top