redstone
- 26
- 0
I'm trying to understand what kind of relation the metric can have with a general tensor B.
d{{x}^{a}}d{{x}^{b}}{{g}_{ab}}=d{{s}^{2}}
\frac{d{{x}^{a}}d{{x}^{b}}{{g}_{ab}}}{d{{s}^{2}}}=1
\frac{d{{x}^{a}}d{{x}^{b}}{{g}_{ab}}}{d{{s}^{2}}}=\frac{1}{D}g_{a}^{a}
\frac{d{{x}^{a}}d{{x}^{b}}{{g}_{db}}g_{a}^{d}}{d{{s}^{2}}}=\frac{1}{D}g_{d}^{a}g_{a}^{d}
\frac{d{{x}^{a}}d{{x}^{b}}{{g}_{db}}g_{a}^{d}}{d{{s}^{2}}}A_{m}^{n}=<br /> \frac{1}{D}g_{d}^{a}g_{a}^{d}A_{m}^{n}
Define: B_{am}^{dn}=g_{a}^{d}A_{m}^{n}
substitute in
\frac{d{{x}^{a}}d{{x}^{b}}{{g}_{db}}}{d{{s}^{2}}}B_{am}^{dn}=\frac{1}{D}g_{d}^{a}B_{am}^{dn}
\frac{d{{x}^{a}}d{{x}^{b}}{{g}_{db}}}{d{{s}^{2}}}B_{am}^{dn}=\frac{1}{D}B_{am}^{an}
It all looks Ok to me. Does all of the following look reasonable, or is there a problem somewhere?
d{{x}^{a}}d{{x}^{b}}{{g}_{ab}}=d{{s}^{2}}
\frac{d{{x}^{a}}d{{x}^{b}}{{g}_{ab}}}{d{{s}^{2}}}=1
\frac{d{{x}^{a}}d{{x}^{b}}{{g}_{ab}}}{d{{s}^{2}}}=\frac{1}{D}g_{a}^{a}
\frac{d{{x}^{a}}d{{x}^{b}}{{g}_{db}}g_{a}^{d}}{d{{s}^{2}}}=\frac{1}{D}g_{d}^{a}g_{a}^{d}
\frac{d{{x}^{a}}d{{x}^{b}}{{g}_{db}}g_{a}^{d}}{d{{s}^{2}}}A_{m}^{n}=<br /> \frac{1}{D}g_{d}^{a}g_{a}^{d}A_{m}^{n}
Define: B_{am}^{dn}=g_{a}^{d}A_{m}^{n}
substitute in
\frac{d{{x}^{a}}d{{x}^{b}}{{g}_{db}}}{d{{s}^{2}}}B_{am}^{dn}=\frac{1}{D}g_{d}^{a}B_{am}^{dn}
\frac{d{{x}^{a}}d{{x}^{b}}{{g}_{db}}}{d{{s}^{2}}}B_{am}^{dn}=\frac{1}{D}B_{am}^{an}
It all looks Ok to me. Does all of the following look reasonable, or is there a problem somewhere?