How Does the No-Slipping Condition Affect Wheel Rotation Dynamics?

schuksj
Messages
4
Reaction score
0
I have a question about this problem. A rotationally symmetric axle wheel system is smoothly joined to a fixed point O.

l=distance from O to CM
m=mass of axle wheel system
R=Radius of wheel
Is and I are the principal moments of inertia relative to CM.
The axle is horizonal as the wheel rolls over the horizonal ground without slipping. The radius of the circle desrcibed by the wheel is L. Show that he no-slipping condition leads to:

d(phi)/dt=-(R/L)*S

I started with Euler's equation for the x component and set theta double dot to zero.

so d(phi)dt*sin(theta)*Is*S-(d(phi)/dt)^2*sin(theta)*cost(theta)=-mLsing(theta)

I said that I=mR^2/2 and Is-mR^2

plugging those into the equation I got:

d(phi)/dt*sin(theta)*mR^2*S-(d(phi)/dt)^2*cos(theta)*sin(theta)*mR^2/2=-mLsin(theta). I then took away the 2nd part of the equation because it is a higher order term and got that d(phi)/dt=-L/(R^2*S). This isn't exactly the right answer and I was wondering what I was doing wrong! Thanks.
 
Physics news on Phys.org
I sitll have no idea how to do this problem. If someone could give me a clue I would really appreciate it. Thanks
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...

Similar threads

Back
Top