How Does Torque Affect Motion in Physics Problems?

AI Thread Summary
The discussion focuses on the effects of torque in various physics problems involving rotational motion. Participants analyze scenarios including a bee landing on a pivoting rod, an Atwood machine with a massed wheel, and a sliding cylinder on an inclined plane. Key points include calculating torque, angular acceleration, and the relationship between torque and net force on masses. The conversation emphasizes the need for understanding forces, conservation of energy, and the conditions for rolling without slipping. Overall, the thread highlights the complexities of applying torque concepts in dynamic systems.
killerinstinct
Messages
92
Reaction score
0
1. a bee of mass M alights (lands softly) on a thin horizontal rod of mass 3M and length l which pivots frictionlessly about its center.

a) what torque did it exert
b) angular acceleration of rod when bee lands.
c) maximum angular velocity when bee reaches LOWEST point?

try:
a) torque = r x F = lmg
b) torque = I a
lmg = a 1/12 (3m) l squared
a = 4g / l
c) use kinematics??

2. atwood machine with frictionless 1.00 kg wheel and radium 0.1 is suspended with two masses on a massless rope. mass A is 2.0 kg. B is 1.5 kg.
a) Relate torque to net force on each of the two masses b) acceleration? c) tensions on THREE?? ropes?

attempt:
a) torque = r x F. but what is r?
b) i know how to do it for massless wheel. but how to incorporate a massed wheel?
c) don't understand the question.

3. A cylinder of mass M and R SLIDES with initial velocity of V0 down an inclinded plane with angle theta. mu is kinetic friction. a) what is acceleration of the objects Center of MASS B) torque on cylinder C) acceleration of cylinder? d) what speed will the object stop sliding and starts to roll?

attempt:
torque = mu m g R = I a
wR= v, for rolling
sigma = w/2 t
how should i go thinking about this problem?
 
Physics news on Phys.org
killerinstinct said:
1. a bee of mass M alights (lands softly) on a thin horizontal rod of mass 3M and length l which pivots frictionlessly about its center.

a) what torque did it exert
b) angular acceleration of rod when bee lands.
c) maximum angular velocity when bee reaches LOWEST point?

try:
a) torque = r x F = lmg
b) torque = I a
lmg = a 1/12 (3m) l squared
a = 4g / l
c) use kinematics??
a) Where does the bee land? How far from the center?
c) Since the acceleration is not constant as the stick pivots, using kinematics will be too hard. Hint: Is anything conserved?

2. atwood machine with frictionless 1.00 kg wheel and radium 0.1 is suspended with two masses on a massless rope. mass A is 2.0 kg. B is 1.5 kg.
a) Relate torque to net force on each of the two masses b) acceleration? c) tensions on THREE?? ropes?

attempt:
a) torque = r x F. but what is r?
b) i know how to do it for massless wheel. but how to incorporate a massed wheel?
c) don't understand the question.
a) You are given the radius.
b) You need to analyze forces on the two masses and the wheel. Combine those three equations to solve for the acceleration.
c) The atwood machine is suspended from a rope (assume it's attached to the ceiling); that's the third rope.

3. A cylinder of mass M and R SLIDES with initial velocity of V0 down an inclinded plane with angle theta. mu is kinetic friction. a) what is acceleration of the objects Center of MASS B) torque on cylinder C) acceleration of cylinder? d) what speed will the object stop sliding and starts to roll?

attempt:
torque = mu m g R = I a
wR= v, for rolling
sigma = w/2 t
how should i go thinking about this problem?
a) What forces act on the cylinder?
b) What torque do those forces exert?
c) The cylinder's center slows down, while it's rotation speeds up. At some point, the condition for rolling without slipping will be met--find that point.
 
1a) lands at end of the rod.
1c) conservation of mechanical energy??
4mgh = 1/2 I w squared??
can you type that out LaTeX for me?

2) torque = rF
Force of tension - m1g = m1a1 = -m1a
Ft-M2g=m2a2 = m2a
force on wheel (i'm stuck here)
2c) do this problem as a system??

3) gravity acts on the cylinder.
ah... i still don't understand the physics part of this...
I'd like to see the process (steps in solving this). i think that would help.
can i see the latex for this and i will expain it back to you to show you that i understand.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top