How High Should Water Be in a Half-Cylinder Tank to Be Half Full?

bopll
Messages
13
Reaction score
0

Homework Statement



A water tank is in the shape of a half cylinder sitting on its side (not its top or its bottom). Let the radius be 10 ft and let the side-lenth on the floor be 30 feet. What should be the water height, measured from the floor up, so that the water tank is half full?

Homework Equations



Volume of a cylinder- h*(pi)r^2

The Attempt at a Solution



First i found the volume needed, which is (30)*(10)^2*pi/2 = 4712.4

Then I tried this problem breaking down rectangular boxes into dy components and set up the integral as follows (using 2sqrt(100-y^2 as the width of the boxes and y as the height of the boxes and 30 being the constant length)

30\int^{0}_{h}\2sqrt{100-y^{2}}*2y dy

and set it equal to the needed volume.

I ended up getting 7.7, which i feel is wrong because the height should be less than half of the radius by just thinking about what SHOULD happen.

Should i be taking an entirely different approach to this or what?

ps sorry for the formatting inconsistencies... kinda new here.

thanks guys.

edit: i can't get my bounds right for whatever reason, but i set it from 0 to h.
 
Last edited:
Physics news on Phys.org
nevermind, i guess i did the calculations wrong.

Can anyone confirm this setup at least?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top