How many revolutions will the car go through?

  • Thread starter Thread starter kerbyjonsonjr
  • Start date Start date
  • Tags Tags
    Car Revolutions
AI Thread Summary
A car accelerates from rest on a curve with a radius of 190m at 0.800 m/s², and the goal is to determine how many revolutions it completes when its total acceleration reaches 2.60 m/s². The total acceleration is calculated using the equation that combines tangential and centripetal components. After several calculations, users find the time to be approximately 27.8 seconds and derive the angular acceleration. Ultimately, the results suggest the car completes around 0.246 to 0.2589 revolutions, indicating minor discrepancies in rounding and calculations. Accurate values for angular acceleration and time are crucial for determining the correct number of revolutions.
kerbyjonsonjr
Messages
34
Reaction score
0

Homework Statement


A car starts from rest on a curve with a radius of 190m and accelerates at 0.800 m/s^2 . How many revolutions will the car have gone through when the magnitude of its total acceleration is 2.60 m/s^2 ?

Homework Equations


The Attempt at a Solution



I have tired the magnitude of acceleration = sqrt ((at^2/r^2) +a^2)
so then I said 2.6 =.8t^2/190^2 + .8^2 So I got 297 seconds for the time.
Then I plugged time into x=1/2at^2 but this is where I am not sure. Which acceleration should I be plugging into that equation. I have tried a=2.6 a=.8 and a=a/r =.004 and none of those are giving me a correct answer.

I have been dividing my answer by 2pi to get the answer in revolutions but the stupid online thing keeps saying try again and I am not sure what I am doing wrong. I appreciate any help! Thanks!
 
Last edited:
Physics news on Phys.org
Units! Where are your units?
 
SammyS said:
Units! Where are your units?

Sorry about that. I just copy pasted so I am not sure why the units didn't show up but I edited it so there should now be units.
 
kerbyjonsonjr said:

Homework Statement


A car starts from rest on a curve with a radius of 190m and accelerates at 0.800 m/s2 . How many revolutions will the car have gone through when the magnitude of its total acceleration is 2.60 m/s2 ?

Homework Equations


The Attempt at a Solution



I have tired the magnitude of acceleration = sqrt ((at^2/r^2) +a^2)
so then I said 2.6 =.8t^2/190^2 + .8^2 So I got 297 seconds for the time.
Then I plugged time into x=1/2at^2 but this is where I am not sure. Which acceleration should I be plugging into that equation. I have tried a=2.6 a=.8 and a=a/r =.004 and none of those are giving me a correct answer.

I have been dividing my answer by 2pi to get the answer in revolutions but the stupid online thing keeps saying try again and I am not sure what I am doing wrong. I appreciate any help! Thanks!

Square of the magnitude of the acceleration: |a|2 = at2 + ac2, where at is the tangential component of acceleration and ac is the centripetal acceleration (aka, the normal component).

For your problem, at = 0.800 m/s2.

For an object traveling in a circle of radius R and speed v (v being the magnitude of the velocity), ac is given by:

a_c=\frac{v^2}{R}.

What must v be for |a|2 to be: (2.60 m/s2)2 ?
 
Centripetal acceleration also equals r*w^2 so you can find w (angular velocity), tangential acceleration=r*alpha so you can find (alpha) angular acceleration. Then use rotational motion equations to find theta (angle of rotation).
 
SammyS said:
Square of the magnitude of the acceleration: |a|2 = at2 + ac2, where at is the tangential component of acceleration and ac is the centripetal acceleration (aka, the normal component).

For your problem, at = 0.800 m/s2.

For an object traveling in a circle of radius R and speed v (v being the magnitude of the velocity), ac is given by:

a_c=\frac{v^2}{R}.

What must v be for |a|2 to be: (2.60 m/s2)2 ?

I used the equation Vf = V0 + at so, v=at and then I plugged that into |a|2 = at2 + ac2 then I solved for t again and this time I got 587 seconds. I don't know if I am getting closer to the answer or further away.
 
w^2 (final)=w^2(initial)+2*angular acceleration*theta, w^2(initial)=0 since the car starts at rest. You can calculate angular velocity and angular acceleration (see previous post) so you can find angle of rotation (theta). I get theta to be about .27 Revolutions.
 
kerbyjonsonjr said:

Homework Statement


A car starts from rest on a curve with a radius of 190m and accelerates at 0.800 m/s^2 . How many revolutions will the car have gone through when the magnitude of its total acceleration is 2.60 m/s^2 ?

The Attempt at a Solution



I have tired the magnitude of acceleration = sqrt ((((at)^2/r)^2) +a^2)
so then I said 2.6^2 =(.8t^2/190)^2 + .8^2 So I got 297 seconds for the time.
I inserted some parentheses and exponents. Is this the computation you really made?
 
SammyS said:
I inserted some parentheses and exponents. Is this the computation you really made?

You are right! I redid it out and got t=24.24 Is that the answer you got for time?
 
  • #10
I got 27.something seconds.

If t=24.24 then, v=.8×(24.24)≈19.9 m/s

Then, ac = v2/R ≈ 1.98 m/s2.

Need ac=√(a2-at2) ≈ 2.5 m/s2.
 
  • #11
SammyS said:
I got 27.something seconds.

If t=24.24 then, v=.8×(24.24)≈19.9 m/s

Then, ac = v2/R ≈ 1.98 m/s2.

Need ac=√(a2-at2) ≈ 2.5 m/s2.

OK I think 27.8 seems to be right. Then would I use x=1/2at2? What value of a should I use? Should I use alpha= a/r =.8/190 =.004? Then have 1/2*.004*27.82 =1.627/2pi = . 2589 revolutions?
 
  • #12
According to this thing the answer is .245 rev. I guess .2589 isn't close enough. IT'S BOGUS
 
  • #13
kerbyjonsonjr said:
OK I think 27.8 seems to be right. Then would I use x=1/2at2? What value of a should I use? Should I use alpha= a/r =.8/190 =.004? Then have 1/2*.004*27.82 =1.627/2pi = . 2589 revolutions?
That's a lot of round off: α = a/r =.8/190 =.004 Use 0.00421 and see what you get.

Oh! I see that you actually did use the result without the round-off.

Using the very rounded-off value of .004 rad/s2, I get very close to that BOGUS answer. (0.246 rev.)
 
Back
Top