zheng
- 1
- 0
how to expand grad f * (p-p_0) in spherical polar coordinates
in spherical polar coordinates:
\nabla f = \frac{\partial f}{\partial r} e_r+ \frac{1}{r sin\theta}\frac{\partial f}{\partial \phi} e_{\phi}+ \frac{1}{r}\frac{\partial f}{\partial \theta} e_{\theta}
p=(r,\phi,\theta) and p_0=(r_0,{\phi}_0,{\theta}_0) is the position vectors.
in r=r_0=1 surface, what is \left[\nabla f\right]_0 \cdot (p-p_0), where \left[\nabla f\right]_0 is the gradient of f in position p_0
in one paper, the answer is \left[\nabla f\right]_0 \cdot (p-p_0)=\left[\frac{1}{sin\theta}\frac{\partial f}{\partial \phi} \right]_0 \left[sin\theta (\phi-{\phi}_0)\right]+\left[ \frac{\partial f}{\partial \theta} \right]_0 (\theta-{\theta}_0). I do not know why the second sin\theta is needed.
in spherical polar coordinates:
\nabla f = \frac{\partial f}{\partial r} e_r+ \frac{1}{r sin\theta}\frac{\partial f}{\partial \phi} e_{\phi}+ \frac{1}{r}\frac{\partial f}{\partial \theta} e_{\theta}
p=(r,\phi,\theta) and p_0=(r_0,{\phi}_0,{\theta}_0) is the position vectors.
in r=r_0=1 surface, what is \left[\nabla f\right]_0 \cdot (p-p_0), where \left[\nabla f\right]_0 is the gradient of f in position p_0
in one paper, the answer is \left[\nabla f\right]_0 \cdot (p-p_0)=\left[\frac{1}{sin\theta}\frac{\partial f}{\partial \phi} \right]_0 \left[sin\theta (\phi-{\phi}_0)\right]+\left[ \frac{\partial f}{\partial \theta} \right]_0 (\theta-{\theta}_0). I do not know why the second sin\theta is needed.
Last edited: