How the two-body decay momentum distribution transform in lab frame?

Chenkb
Messages
38
Reaction score
1
For two-body decay, in the center of mass frame, final particle distribution is,
$$
W^*(\cos\theta^*,\phi^*) = \frac{1}{4\pi}(1+\alpha\cos\theta^*)
$$
We have the normalization relation , ##\int W^*(\cos\theta^*,\phi^*)d\cos\theta^* d\phi^*=1##.

And we also know that in CM frame ##p^*## is a constant, say, ##p^*=C^*##.

So, the final particle momentum distribution can be write as(I'm not sure),
$$
W^*(\cos\theta^*,\phi^*,p^*) = \frac{1}{4\pi}(1+\alpha\cos\theta^*)\delta(p^*-C^*)
$$
If the above momentum distribution in CM frame is right,
then what does it look like in the lab frame,
$$W(\cos\theta,\phi,p)=?$$
assume that the mother particle moves with velocity ##\beta## along ##z## axis.
I know it is just a Lorentz transformation, but how to handle this, especially the ##\delta##-function.

Best Regards!
 
Physics news on Phys.org
You only need to transform the angle according to the usual formula (see for example http://www.maths.tcd.ie/~cblair/notes/specrel.pdf). p* is usually a combination of the masses of the decaying particle and of the decay product so it remains the same under Lorentz transformation.
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top