frogjg2003
- 263
- 0
Homework Statement
Consider a charged particle of charge e traveling in the electromagnetic
potentials
<br /> \mathbf{A}(\mathbf{r},t) = -\mathbf{\nabla}\lambda(\mathbf{r},t)\\<br /> \phi(\mathbf{r},t) = \frac{1}{c} \frac{\partial \lambda(\mathbf{r},t)}{\partial t}<br />
where \lambda(\mathbf{r},t) is an arbitrary scalar function.
Show that the wavefunction is
<br /> \psi(\mathbf{r},t) = exp\left(-\frac{\mathit{i}e}{\hbar c} \lambda(\mathbf{r},t)\right) \psi^{(0)}(\mathbf{r},t)<br />
where \phi^{(0)}(\mathbf{r},t) is the solution to the Schrodinger equation for the case \lambda(\mathbf{r},t)=0.
of ¸(r, t) = 0.
Homework Equations
\hat{H} = \frac{(\mathbf{p}-\frac{q}{c}\mathbf{A}(\mathbf{r},t))^2}{2m} + q\phi(\mathbf{r},t)
The Attempt at a Solution
The Hamiltonian is
<br /> \hat{H} = \frac{(\mathit{i}\hbar\mathbf{\nabla} + \frac{e}{c}\mathbf{\nabla}\lambda(\mathbf{r},t))^2}{2m} + \frac{e}{c} \frac{\partial\lambda(\mathbf{r},t)}{\partial t}<br />
and the \lambda=0 wavefunction is
<br /> \psi^{(0)} = exp(\mathit{i} \left(\mathbf{k}\cdot\mathbf{r} - \frac{\hbar k^2 t}{2m}\right)<br />
I'm stuck at applying the Hamiltonian to the function. For the \nabla^2\lambda\psi term, do we apply the Laplacian to just \lambda or to \lambda\psi? Similarly for the cross term and the time derivative.
Is it
<br /> \hat{H}\psi = -\frac{\hbar^2}{2m}\nabla^2\psi + \frac{\mathit{i}e\hbar}{2mc} \left(\nabla\cdot(\psi\nabla\lambda) + (\nabla\lambda)\cdot(\nabla\psi)\right) + \frac{e}{2mc}\psi\nabla^2\lambda + \frac{e}{c} \psi\frac{\partial\lambda}{\partial t}<br />
or
<br /> \hat{H}\psi = -\frac{\hbar^2}{2m}\nabla^2\psi + \frac{\mathit{i}e\hbar}{2mc} \left(\nabla^2(\psi\lambda) + (\nabla\lambda\cdot\nabla)\psi\right) + \frac{e}{2mc}\nabla^2(\lambda\psi) + \frac{e}{c} \frac{\partial(\lambda\psi)}{\partial t}<br />
Last edited: