How to Calculate Electric Field at the Center of Curvature of a Hemisphere?

captainjack2000
Messages
96
Reaction score
0

Homework Statement


Charge Q is distributed uniformly over surface of a hemisphere of radius r. Calculate electric field at centre of curvature of hemisphere.


Homework Equations


I realize that this should be quite straightforward but I am a bit confused.
The total charge Q is distributed over surface of hemisphere with surface charge density sigma where
sigma = Q/(2*PI*r^2)
I think you would then divide the hemisphere into a series of rings where each ring would carry a charge
dQ=sigma*2*PI*dr ?

At the centre of curvature the components of electric field perpendicular to the axis will cancel so you will only have electric field along the axis z.

Not quite sure where to go from here.





The Attempt at a Solution

 
Physics news on Phys.org
You're correct in saying that there only is a z-component of the field so express dE_z in terms of dE.

You also know that dQ=\sigma dA. What is dA in spherical polar coordinates? What are the values of \theta and \phi for half a sphere?
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top