How to Calculate Principal Stresses in a Stressed Component?

  • Thread starter Thread starter cabellos
  • Start date Start date
Click For Summary

Homework Help Overview

The discussion revolves around calculating principal stresses in a stressed component, specifically focusing on a scenario where the stresses are given as sigma(x) = 220MPa, sigma(y) = -95MPa, and shear = 60MPa. Participants are exploring how to approach the problem of finding the maximum and minimum direct stresses (principal stresses) at a critical point in the component.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants discuss the need for related formulae and mention a specific formula that may be applicable. There is also a consideration of the second part of the question regarding the angle of maximum stresses, with some participants suggesting the use of 2D Mohr Circle and trigonometric relationships.

Discussion Status

The discussion is active, with participants sharing their thoughts on potential solutions and methods. Some guidance has been offered regarding the formulas and concepts that may be relevant to solving the problem, but there is no explicit consensus on the approach yet.

Contextual Notes

Participants are working within the constraints of a homework assignment, which may limit the information they can use or the methods they can apply. The second part of the question introduces additional complexity regarding the angle of principal stresses.

cabellos
Messages
76
Reaction score
1
Principal stresses help please?

I am looking through past paper examinations and have come a across a question:

At a certain critical point in a stressed component, calculations show that the stresses are sigma(x) = 220MPa sigma(y) = -95MPa and shear = 60MPa

Find the maximum and minimum direct stresses (principal stresses) in the component at that point?

How do i go about this problem?

Thankyou.
 
Physics news on Phys.org
Well, do you know any related formulae? To be more specific, there is exactly one formula you need to apply.
 
Ah yes i think I have a solution to this problem now using the general formula for plane stresses.

There is a second part to the question where it now asks to find the angle which the maximum stresses make with the direction sigma(x)?

Does this involve the 2D Mohr Circle?
 
cabellos said:
Ah yes i think I have a solution to this problem now using the general formula for plane stresses.

There is a second part to the question where it now asks to find the angle which the maximum stresses make with the direction sigma(x)?

Does this involve the 2D Mohr Circle?

You can simply use tg(2A) = Txy / (Nx - Ny), where A is the angle of the principal stress, Nx and Ny are normal stresses and Txy is the shear stress.

Have on mind that tg2(A + Pi/2) = tg(2A).
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
Replies
5
Views
4K
  • · Replies 21 ·
Replies
21
Views
7K
Replies
0
Views
2K