chmate
- 37
- 0
Find (\vec{a}\times \vec{b})\cdot \vec{c} if \vec{a}=3\vec{m}+5\vec{n}, \vec{b}=\vec{m}-2\vec{n}, \vec{c}=2\vec{m}+7\vec{n}, |\vec{m}|=\frac{1}{2}, |\vec{n}|=3, \angle(\vec{m},\vec{n})=\frac{3\pi}{4}
This is my approach:
(\vec{a}\times\vec{b})\cdot\vec{c}=[(3\vec{m}+5\vec{n})\times(\vec{m}-2\vec{n})]\cdot(2\vec{m}+7\vec{n})=[3\vec{m}\times\vec{m}-6\vec{m}\times\vec{n}+5\vec{n}\times\vec{m}-10\vec{n}\times\vec{n}]\cdot(2\vec{m}+7\vec{n})=\bf(-11\vec{m}\times\vec{n})\cdot(2\vec{m}+7\vec{n})
I stuck here. I don't know the coordinates of \vec{m} and \vec{n}.
Maybe the whole approach is wrong. I don't have any other idea on solving this problem so I need your help.
This is my approach:
(\vec{a}\times\vec{b})\cdot\vec{c}=[(3\vec{m}+5\vec{n})\times(\vec{m}-2\vec{n})]\cdot(2\vec{m}+7\vec{n})=[3\vec{m}\times\vec{m}-6\vec{m}\times\vec{n}+5\vec{n}\times\vec{m}-10\vec{n}\times\vec{n}]\cdot(2\vec{m}+7\vec{n})=\bf(-11\vec{m}\times\vec{n})\cdot(2\vec{m}+7\vec{n})
I stuck here. I don't know the coordinates of \vec{m} and \vec{n}.
Maybe the whole approach is wrong. I don't have any other idea on solving this problem so I need your help.