How to calculate water pressure drop in cooling tower piping system?

AI Thread Summary
To calculate water pressure drop in a cooling tower piping system, the Hazen-Williams equation is typically used for closed circuit chilled water systems. However, for open circuit systems, adjustments may be necessary due to differing conditions like atmospheric pressure at the pump intake and discharge. Factors such as the pump's Net Positive Suction Head (NPSH) and temperature variations in the water must also be considered. The equation's parameters, including the Hazen-Williams roughness constant and hydraulic diameter, remain relevant but may require modification based on specific system characteristics. Understanding these nuances is crucial for accurate pressure drop calculations in cooling tower applications.
HVAC Master
Messages
1
Reaction score
0
TL;DR Summary
calculating water pressure drop in cooling tower piping system
When calculating water pressure drop in chilled water pipisystem (closed circuit) we always use Hazen Williams equation as follow:-
h100ft = 0.2083 x (100 / c)^1.852 x q^1.852 / dh^4.8655
where

h100ft = friction head loss in feet of water per 100 feet of pipe (ft.w/100 ft pipe)
c = Hazen-Williams roughness constant

q = volume flow (gal/min)
dh = inside hydraulic diameter (inches)
but in case of calculating water pressure drop in cooling tower piping system (open circuit), shall we modify something in Hazen Williams equation or shall we use another equation?
 
Engineering news on Phys.org
Please, see:
https://www.engproguides.com/condenser-water-pump-design.html

Pump intake conditions are atmospheric pressure plus water column (consider pump NPSH to avoid cavitation).
At the end of the hydraulic circuit, you have the sprayers discharging at atmospheric pressure.
Consider also changes of temperature of the water through the pipes circuit.
 
Thread 'What type of toilet do I have?'
I was enrolled in an online plumbing course at Stratford University. My plumbing textbook lists four types of residential toilets: 1# upflush toilets 2# pressure assisted toilets 3# gravity-fed, rim jet toilets and 4# gravity-fed, siphon-jet toilets. I know my toilet is not an upflush toilet because my toilet is not below the sewage line, and my toilet does not have a grinder and a pump next to it to propel waste upwards. I am about 99% sure that my toilet is not a pressure assisted...
After over 25 years of engineering, designing and analyzing bolted joints, I just learned this little fact. According to ASME B1.2, Gages and Gaging for Unified Inch Screw Threads: "The no-go gage should not pass over more than three complete turns when inserted into the internal thread of the product. " 3 turns seems like way to much. I have some really critical nuts that are of standard geometry (5/8"-11 UNC 3B) and have about 4.5 threads when you account for the chamfers on either...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
Back
Top