SithsNGiggles
- 183
- 0
Homework Statement
Derive a formula for ##x_p## if the equation is ##mx''+cx'+kx=F_0\cos(\omega t)+F_1\color{red}{\cos}(\color{red}{3}\omega t)##. Assume ##c>0##.
Homework Equations
The Attempt at a Solution
I've started off using a guess and the undetermined coefficients method, but that doesn't seem to get me anywhere.
Try ##x_p=A\cos(\omega t)+B\sin(\omega t)+C\cos(3\omega t)+D\sin(3\omega t)##
##x_p'=-A\omega\sin(\omega t)+B\omega\cos(\omega t)-3C\omega\sin(3\omega t)+3D\omega\cos(3\omega t)##
##x_p''=-A\omega^2\cos(\omega t)-B\omega^2\sin(\omega t)-9C\omega^2\cos(3\omega t)-9D\omega^2\sin(3\omega t)##
And this gives me the system
##\begin{cases}-Am\omega^2+Bc\omega+Ak=F_0\\ -Bm\omega^2-Ac\omega+Bk=0\\ -9Cm\omega^2+3Dc\omega+Ck=F_1\\ -9Dm\omega^2-3Cc\omega+Dk=0\end{cases}##
I'm not sure where to go from here, or if I'm on the right track in the first place.
Last edited: