How to Determine the Magnetic Field at the Center of a Partially Open Loop?

slayer1337
Messages
1
Reaction score
0
1. An electric circuit consists of two long straight sections connecting a loop of radius r. The gap in the loop where the straight sections are connected subtends an angle of theta=60d, as shown in this figure (http://imgur.com/tseDHL6). Determine the magnetic field B at the point P in the centre of the loop, if a current I is flowing through the circuit.

See the diagram here - http://imgur.com/tseDHL6

2. Biot-Savart Law
3. The Attempt at a Solution - http://imgur.com/QFrlSn7

I have found the equation relating to the full loop but don't know how to do it for the missing segment.
 

Attachments

  • photo.jpg
    photo.jpg
    43 KB · Views: 539
Physics news on Phys.org
What's wrong with integrating ##d l\over r^2## ?
 
You need to use the Biot-Savart law:

7463d12e92a79b39f6b3ac7d44dfe1be.png
 
Ma is right, but the next step is to convert to integrating ##d l\over r^2## because there is only one component left over; the others cancel.
 
\int rd θ/r^2/
 
Consider finding the field as though the circular section wasn't there, but the wire was continuous from -infinity to +infinity: B1. Can use ampere's law.

Then, use Biot-Savart to compute the field due to a short section of wire connecting the loose ends of the loop: B2.

Then, use Biot-Savart to compute the field due to the loop: B3.

B = B1 - B2 + B3.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top