OK, I'll try to answer this as best I can (with the caveat that, although I am a wind turbine engineer, there are a lot of differences between the
giant ones I work on and small ones for individual generation)
alokkumar said:
Summary:: I am designing micro Wind turbine however I am unclear what rpm electrical generator should be chosen for a given power rating of wind turbine.
E.g. if I choose 100rpm electrical generator which will produce 1kw power. Then I have to be sure that my wind turbine system at least rotates around 100rpm. Otherwise i have to put gear boxes. Which I want to avoid.
Generally, RPM is mostly determined by rotor diameter. For large wind turbines, you'd tend to run a maximum tip speed of around 75-90m/s, so your RPM will be whatever it needs to be to achieve that tip speed. I'd imagine that maybe small ones run a bit slower than this, but honestly I'm not sure. It doesn't really relate to power (other than that obviously larger turbines tend to both spin slower and make more power). If you're running similar tip speeds to large turbines, I'd expect one spinning 100RPM to be around 15-18m diameter. That having been said, that'd be awfully large for a 1kW turbine, since usually that would be more like a 2m diameter or so to get that kind of power. If you have a 100RPM 1kW generator, you'll either be running a fairly low tip speed, a gearbox, or a very low rotor loading.
alokkumar said:
So I need formula of rotational wind turbine system. Does it have any relation to input Kinetic energy of wind? Or some other formula.
How to determine rpm of rotational body such as wind turbine blades. Is there any relation of input wind velocity with the blade rpm?
As I mentioned yesterday, often turbines spin such that the tip speed is about 8x the wind speed or so. Generally, the higher the L/D ratio of your blades, the faster you want to spin them, so for a small turbine, you'd probably want to go a bit slower because you probably can't achieve quite as high a L/D. For a basic home design, I might initially design for a tip speed ratio of 4-5 or so and go from there.
There's also a concern with overspeeding - large turbines can pitch the blades out above a certain wind speed to prevent the turbine from spinning too fast. However, I'm assuming you're setting this up to be largely passive. If you're running a lower TSR, that helps a lot since that just means you'll be spinning a lot slower in general, but you still need to pay attention to how fast you can spin your generator and what the structural constraints are.
I also know that some early turbines were "stall-regulated" designs, where the blades were intentionally designed to stall above a particular wind speed to prevent them from going any faster. I don't know the details of exactly how this was achieved though, since as I said, that hasn't been a thing for a long time (much longer than it has been since I've been in the industry).
alokkumar said:
If the rpm formula in relation to input wind velocity is known then I can choose exact matching rpm for electrical generator for a given power output.
As per law of conservation of energy
Input Kinetic Energy (wind) = Rotational Kinetic Energy of wind turbine + Energy unused by turbine (approx. max < 41 % betz law)
But input KE of wind is unknown because (1/2 mv*v) mass of parcel of air is unknown.
Rotational energy of rotational body(1/2 * I*omega*omega).
The KE of the incoming air (along with the Betz limit) does let you know something about what your generator's power curve should look like. Also, you can use it to size your turbine if you also know the typical mean wind speed in your area - if your area averages 7m/s, you probably want to design your turbine to hit full power at no more than 10m/s or so, because you'll spend so little time up at those high wind speeds above 10m/s that it's not worth designing the turbine to run faster/more powerfully up there. Then, if you know you want 1kW, and you know you want to hit that at 10m/s, you can figure out what kind of diameter you need (based on the incoming KE of the wind) and what the associated RPM will be (based on your design tip speed ratio). Also, although the betz limit theoretically allows for 59% efficiency, I'd be very hesitant to assume more than 30% or so for a home design.Hopefully this is at least a little bit helpful?