How to Find Magnetic Field and Vector Potential of a Rotating Charged Disk?

  • Thread starter Thread starter mochi_melon
  • Start date Start date
  • Tags Tags
    Magnetic Potential
mochi_melon
Messages
5
Reaction score
0

Homework Statement


Disk of radius S has uniform charge Q on surface. Roates with angular velocity w = w z(^) about symmerty axis Z. I am asked to find magnetic field (I believe I have that answer though it's messy and maybe wrong) vector potential (of which I have no idea) and the torque on a magnet with magnetic dipole m = m s(^) place in the equitorial plane at a distance s from the center of the disk.


Homework Equations



?

The Attempt at a Solution


The first part I have NO idea on.
For the second part, torque = mXB
m = Iarea = I*pi*S^2

But where does the distance s go? Thank you!
 
Physics news on Phys.org
I interpret the problem to mean that the location of the magnetic dipole is in the plane of the spinning disk at a distance s fom its center. If (s^) means a unit vector in the direction of the vector s, then I think that means radially outward from the center of the disk.

Did you find the field at all points in space? If you were able to do that, you can probably do the integral required to find the vector potential

http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/magvec.html
 
Yes, that was the unit vector I didn't know how to type it.

What formula would I use to find the field at all points? My prof never covered rotation in class yet assigned it for home so I am really confused :( We did go over the information on the page you linked, but I need to get the field first and then I can find the potential?
 
mochi_melon said:
Yes, that was the unit vector I didn't know how to type it.

What formula would I use to find the field at all points? My prof never covered rotation in class yet assigned it for home so I am really confused :( We did go over the information on the page you linked, but I need to get the field first and then I can find the potential?

The rotation of a charged disk is just another way of producing a current density. You can treat your problem as a set of nested current loops. Finding the field or the vector potential at all points in space for even one current loop is not a trivial calculation. I was a bit surprised when you said you had worked out the field because I don't think it is all that easy to do, but it can be done.

The vector potential for one current loop is done here.

http://www.cmmp.ucl.ac.uk/~drb/Teaching/PHAS3201_MagneticFieldsFull.pdf

showing that the vector potential can be reduced to an elliptic integral. Then approximations are made to finish the problem. For your disk, the solution to the loop problem could serve as the starting point for an integral over nested loops, but only if the approximations are valid in your case.

Maybe your problem is only expecting you to treat the rotating disk as a magnetic dipole. If so, finding the dipole moment of the disk as nested current loops is not too difficult, and the field and vector potential of the dipole are known. See for example

http://en.wikipedia.org/wiki/Dipole
 
Last edited by a moderator:
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top