How to Find the Moment of Inertia of a Semicircular Rod?

sunniexdayzz
Messages
13
Reaction score
0
Find the moment of inertia when the wire of constant density shaped like the semicircle
y=sqrt(r^2-x^2)
where r is the radius
is revolved around the x-axis

I don't even know where to begin =[
 
Physics news on Phys.org
sunniexdayzz said:
Find the moment of inertia when the wire of constant density shaped like the semicircle
y=sqrt(r^2-x^2)
where r is the radius
is revolved around the x-axis

I don't even know where to begin =[

Welcome to the PF. Start with the definition of the Moment of Inertia. What is it in the general case?

I'm also having a little trouble visualizing the shape... is there any way you can sketch it?
 
the general case for a thin rod is I=\int(mr^2)
with m=mass and r=radius

but I don't know what it is for a curved rod. The rod in the problem is a semi circle about the origin in quadrants I and II with radius r
 
You have to do the integration from the definition of moment of inertia.

<br /> I\ =\ \int dm\ r^2\ <br />

Some tips: dm can be expressed in terms of linear density dm\ = \rho d\theta, with theta in play due to it being easier in this case to use polar co-ordinates.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top