qoqosz
- 19
- 0
Homework Statement
In Cartesian coordinate system are two point masses of mass m connected with massless rod. Masses are in (0,r,0) and (0,-r,0).
a) Find the moment of inertia tensor.
b) Points were rotated in OXY plane such that angle between rod and Y-axis is \vartheta (new cooridnates of masses are (-r \sin \vartheta, r \cos \vartheta, 0), (r \sin \vartheta, -r \cos \vartheta, 0)
Homework Equations
\hat{I} = \left(\begin{matrix}<br /> I_{xx} & I_{xy} & I_{xz}\\<br /> I_{yx} & I_{yy} & I_{yz}\\<br /> I_{zx} & I_{zy} & I_{zz}\\<br /> \end{matrix}<br /> \right)
I_{xx} = \sum _{k} m_{k} (y^{2}_{k}+z^{2}_{k}) = \sum _{k} m_{k}(r^{2}_{k} - x^{2}_{k})\!
I_{yy} = \sum _{k} m_{k} (z^{2}_{k}+x^{2}_{k}) = \sum _{k} m_{k}(r^{2}_{k} - y^{2}_{k})\!
I_{zz} = \sum _{k} m_{k} (x^{2}_{k}+y^{2}_{k}) = \sum _{k} m_{k}(r^{2}_{k} - z^{2}_{k})\!
I_{xy} = I_{yx} = - \sum _{k} m_{k} x_{k}y_{k}\!
I_{yz} = I_{zy} = - \sum _{k} m_{k} y_{k}z_{k}\!
I_{zx} = I_{xz} = - \sum _{k} m_{k} z_{k}x_{k}\!
The Attempt at a Solution
a) Using relevant equations I get
\hat{I} = \left(\begin{matrix} 2 m r^2 & 0 & -2 m r^2 \\ 0 & 4 m r^2 & 0 \\ -2mr^2 & 0 & 2mr^2 \end{matrix}\right)
is it correct?
b) I'm not sure, hence I'm asking :) - is it enough (and correct) to calculate:
\hat{I}' = \hat{I} \left(\begin{matrix} \cos \varphi & \sin \varphi & 0 \\ -\sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{matrix}\right) or maybe \hat{I}' = \left(\begin{matrix} \cos \varphi & \sin \varphi & 0 \\ -\sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{matrix}\right) \hat{I} or sth else?