Hummingbird25
- 84
- 0
Hi
Given the function f(t) = t^2, were t \in ]- \pi, pi[, and is continious find the Fourier series for f(t). L = 2 \pi.
Then
A_0 = \frac{1}{2 \pi} \int \limit_{-\pi} ^{\pi} t^2 dt = \frac{\pi ^2}{3}
A_n = \int \limit_{-\pi} ^{\pi} t^2 \cdot cos(\matrm{n} \pi \mathrm{t}) dt
A_n = \int \limit_{-\pi} ^{\pi} u^2 \cdot cos(u) du, where u = n \pi t,
The new limit gives:
A_n = \int \limit_{0} ^{2 \pi^2 n} u^2 \cdot cos(u) du
A_n = [u^2 \cdot sin(u) - 2sin(u) + 2u sin(u)]_{0} ^{2 \pi ^ 2 n}
Then
B_n = \int \limit_{0} ^{2n \pi^2} u^2 \cdot sin(u) du
which gives
B_n = (2-4n^2 * \pi ^4 * cos(2n * \pi ^2) + 4n *sin (2n * \pi ^2) \pi ^2 -2
Therefore the Fourier series for f(t) is:
\frac{\pi ^ 2}{3} + \sum \limit_{n=1} ^{\infty} A_n cos(nt) + B_n sin(nt)
Could someone please me if my calculations are correct?
Sincerley
Yours
Hummingbird
Given the function f(t) = t^2, were t \in ]- \pi, pi[, and is continious find the Fourier series for f(t). L = 2 \pi.
Then
A_0 = \frac{1}{2 \pi} \int \limit_{-\pi} ^{\pi} t^2 dt = \frac{\pi ^2}{3}
A_n = \int \limit_{-\pi} ^{\pi} t^2 \cdot cos(\matrm{n} \pi \mathrm{t}) dt
A_n = \int \limit_{-\pi} ^{\pi} u^2 \cdot cos(u) du, where u = n \pi t,
The new limit gives:
A_n = \int \limit_{0} ^{2 \pi^2 n} u^2 \cdot cos(u) du
A_n = [u^2 \cdot sin(u) - 2sin(u) + 2u sin(u)]_{0} ^{2 \pi ^ 2 n}
Then
B_n = \int \limit_{0} ^{2n \pi^2} u^2 \cdot sin(u) du
which gives
B_n = (2-4n^2 * \pi ^4 * cos(2n * \pi ^2) + 4n *sin (2n * \pi ^2) \pi ^2 -2
Therefore the Fourier series for f(t) is:
\frac{\pi ^ 2}{3} + \sum \limit_{n=1} ^{\infty} A_n cos(nt) + B_n sin(nt)
Could someone please me if my calculations are correct?
Sincerley
Yours
Hummingbird
Last edited: