How to Integrate Complicated Volume Integrals of Spheres?

geft
Messages
144
Reaction score
0
I can't seem to get the answer. How to integrate when it's this complicated?
 

Attachments

  • _DSC5958.JPG
    _DSC5958.JPG
    29.2 KB · Views: 432
Physics news on Phys.org
Assuming correctness up to the next to last line, you can look up the integral of (sinx)**3. The integral of sinx(cosx)**2 is like a**u du because you have du which is sinx * dx.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top