- #1

Sho Kano

- 372

- 3

## Homework Statement

Calculate ##\iint { y+{ z }^{ 2 }ds } ## where the surface is the upper part of a hemisphere with radius a centered at the origin with ##x\ge 0##

## Homework Equations

Parameterizations:

##\sigma =\left< asin\phi cos\theta ,asin\phi sin\theta ,acos\phi \right> ,0\le \phi \le \frac { \pi }{ 2 } ,\frac { -\pi }{ 2 } \le \theta \le \frac { \pi }{ 2 } \\ N=(asin\phi )\sigma \\ \left| N \right| ={ a }^{ 2 }sin\phi \\ \\ \alpha =\left< rcos\theta ,rsin\theta ,0 \right> ,0\le r\le a,\frac { -\pi }{ 2 } \le \theta \le \frac { \pi }{ 2 } \\ N=-k\\ \left| N \right| =1##

## The Attempt at a Solution

are these the right parameterizations?