How to solve a Sum of Forces Problem with Two Springs and Varied Masses?

  • Thread starter Thread starter simplemail1
  • Start date Start date
  • Tags Tags
    Forces Sum
AI Thread Summary
The discussion focuses on solving a physics problem involving two springs and varied masses. Key aspects include calculating the compression of the spring, frequency of oscillation, and maximum amplitude after contact. Participants emphasize using Newton's second law (F=ma) and conservation of energy to derive solutions, noting the importance of distinguishing between the spring's natural length and its position at rest. There is some confusion regarding the problem's wording, particularly whether it asks for the equilibrium position or the maximum compression during oscillation. Clarifying the problem statement is suggested to ensure accurate solutions.
simplemail1
Messages
3
Reaction score
0
1. The problem statement, all variables and given/known

Homework Statement


There is a spring with two crates, (5kg +3 kg) as shown in this picture. (1)
The spring constant is 1000 n/m.

I need to find
a) How much the spring is compressed from its initial position (at rest)
b) The frequency of the oscillation
c) Max amplitude after contact

And then there is a different spring, oscillating horizontally with 2 boxes on top of each other, m1 on m2. The maximum force of friction is define as f.

I need to find the a) max horizontal acceleration for the m1 not to slip on m2 and I need to find the b) max amplitude for simple harmonic motion without m1 slipping. I'm not given any numbers whatsoever.

The Attempt at a Solution



For a) I would think I would do (8)(9.8) and then do that against the force of the constant
b) I think I would use w (frequency?) = (k/m)^1/2.
c) I'm not too sure on this

I don't know what to do afterwards (or at all) for the second spring
 

Attachments

  • 1.JPG
    1.JPG
    4.6 KB · Views: 416
Last edited:
Physics news on Phys.org
Any advice to kick me off?
 
Hi simplemail1,

For part a of the first problem, you can definitely use the sum of the forces; however, the acceleration is not zero so you would need to be able to tell what the acceleration is and set the sum of the forces equal to ma. As an alternative, I would try using conservation of energy to find the answer.
 
Hi,

Exactly, all of these questions can be solved from the Newton's equation F=ma.
a) In this case, the equilibrium position is asked, so a=0 and sum of forces=0. In the sum of forces, you have the gravitation force mg and the reaction of the spring k(l-l0). In those kind of problems always be aware of the difference between the position at rest and the natural length of the spring l0 that are different due to the gravitation
b) F=ma allows you to obtain the differential equation of movement, mx''+kx=0 so you can have the pulsation
c) solving the differential equation allows you to have x(t), x'(t) and x''(t), which all will be sinusoidal functions... It is easy to have their maximum

For the second spring, always the same problem, but the forces will be different: no gravitation, but friction force.
 
Hi jonpoux,

jonpoux said:
Hi,

Exactly, all of these questions can be solved from the Newton's equation F=ma.
a) In this case, the equilibrium position is asked, so a=0 and sum of forces=0. In the sum of forces, you have the gravitation force mg and the reaction of the spring k(l-l0). In those kind of problems always be aware of the difference between the position at rest and the natural length of the spring l0 that are different due to the gravitation

The wording of the question is not too clear, but I don't think they are asking for the equilibrium position in this problem. They are setting up an oscillation so I think they want the maximum distance the spring is compressed from it's initial position during the oscillation.


simplemail,

It doesn't look like you typed in the complete statement of the problem. It might be best if you type in everything the problem said; little details can make a big difference.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top