suspenc3
- 400
- 0
heres what i have:
\int_{0}^{2\sqrt{3}} \frac {x^3}{\sqrt{16-x^2}}dx
let x=4sin\phi
dx=4cos4\phi
\sqrt{16-x^2} = \sqrt{16-4sin^2\phi} = \sqrt{4cos^2\phi = 4cos\phi
\int_{0}^{2\sqrt{3}} \frac{x^3}{\sqrt{16-x^2}}dx
\int_{0}^{2\sqrt{3}} \frac{4sin^3\phi}{4cos\phi}4cos\phi d\phi
= 4\int_{0}^{2\sqrt{3}} sin^3/phi
=4\int_{0}^{2\sqrt{3}}sin^2\phi(sin(phi)
=4\int_{0}^{2\sqrt{3}} 1-cos^2\phi(sin\phi)
=4\int_{0}^{2\sqrt{3}} sin\phi - sin \phi (cos^2\phi)
this is as far as i went because i think i messed up
any help would be appreciated
\int_{0}^{2\sqrt{3}} \frac {x^3}{\sqrt{16-x^2}}dx
let x=4sin\phi
dx=4cos4\phi
\sqrt{16-x^2} = \sqrt{16-4sin^2\phi} = \sqrt{4cos^2\phi = 4cos\phi
\int_{0}^{2\sqrt{3}} \frac{x^3}{\sqrt{16-x^2}}dx
\int_{0}^{2\sqrt{3}} \frac{4sin^3\phi}{4cos\phi}4cos\phi d\phi
= 4\int_{0}^{2\sqrt{3}} sin^3/phi
=4\int_{0}^{2\sqrt{3}}sin^2\phi(sin(phi)
=4\int_{0}^{2\sqrt{3}} 1-cos^2\phi(sin\phi)
=4\int_{0}^{2\sqrt{3}} sin\phi - sin \phi (cos^2\phi)
this is as far as i went because i think i messed up
any help would be appreciated
Last edited: