stunner5000pt
- 1,443
- 4
How do i solve
\int_{0}^{\infty} \lambda^2 r e^{-\lambda r} dr
if i were to integrate it i get
\left[-e^{-lambda r} (1 + r \lambda)\right]_{0}^{\infty}
what is \lim_{r \rightarrow \infty} \frac{r}{e^r}
is it zero?? by virtue of e increasing faster than r ??
\int_{0}^{\infty} \lambda^2 r e^{-\lambda r} dr
if i were to integrate it i get
\left[-e^{-lambda r} (1 + r \lambda)\right]_{0}^{\infty}
what is \lim_{r \rightarrow \infty} \frac{r}{e^r}
is it zero?? by virtue of e increasing faster than r ??
Last edited: