How to Solve the Scalar Density Integral in Spherical Coordinates?

Korbid
Messages
15
Reaction score
0
hi!

i need to solve this integral:

\rho_s=\int (m/\omega)e^{-\omega/T}d{\vec k}
where \omega=\sqrt{m^2+{\vec k}} is the dispersion relation, T is the temperature of the system and m the mass of a particle

Thank you!
 
Physics news on Phys.org
How do you add a scalar to a vector?

If k would be a scalar, the derivative of ##e^{-\omega / T}## looks promising.
 
Sorry! I was wrong!

\omega = \sqrt{m^2 + \vec{k}^2}

However, i still can't solve it.
 
Did you try spherical coordinates?
 
Back
Top