How to Solve Thermodynamics Relations for Liquid Alcohol?

fujiwara_sai
Messages
11
Reaction score
0

Homework Statement



We propose to study simple processes of liquid alcohol. At T_1, the molar volume of alcohol is V_1 and its molar heat capacity at constant pressure is C_p,m. We assume that its isobaric coefficent of thermal expansion a, and the isothermal compressibilty coefficient B are constant.

a. Find the molar heat capacity (C_v,m) at constant volume and T_1, and the variation of the pressure with temperature at constant volume.

b. starting from an initial state (T_1, V_1), alcohol receives an amt. of heat at constant pressure P, and its final temp. is T_2. Evaluate the work received by alcohol during the process.

c. Find a formal expression for the rate of change with temperature of the internal energy of the liquid at constant pressure.


Homework Equations



isothermal coefficient of thermal expansion, a = 1/V * (dV/dT)_p
isothermal compressibilty coefficient B, -1/V * (dV/dP)_T

C_p = C_v + TVa^2/B ------ eqn (1)

The Attempt at a Solution



For qns a, i have no idea how to go about finding C_v,m. So i simply used the direct relatonship in eqn (1) to find C_v,m which i highly doubt its correct.
for the second part of the qns,
I used P=P(T,V)
-> dP = MdT + NdV
doing some algebric manipulation: dV = (1/N * dP) - (M/N * dT)
by comparing coefficients from the derived eqn of V=V(T,P)...
i got my final dP = (a/B * dT) - (1/VB *dV)
at constant volume: (dP/dt)_V = a/B

is this correct?

For qns b, here's what i attempted:

(T_1, V_1) ----> (T_2, V_2) at constant P.
Using U=U(T,P) thermodynamics relationship and letting dP=0
i get dU = (C_p - PVa)*dT
by integrating from T_1 to T_2, i will get the change in U.
then to find the Q received, i used H=H(T,P)
where in the end i get dH=Q=C_p * dT
again i integrate to find Q.
then finally i use first law U= Q+W to find W.
is this correct?

For qns c,

i used U=U(T,P)
at constant P, i get dU=(C_P-PVa)*dT

im not sure if this is correct or not...

thanks a lot for helping me out
 
Physics news on Phys.org
is there any kind soul who can help me?

Thanks!
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top