How to Write a Linear System in Matrix Form

Totalderiv
Messages
69
Reaction score
1

Homework Statement


Write the given system in the form x'=P(t)x + f(t)

x'=-3y , y'=3x


Homework Equations


x'=P(t)x + f(t)
x(t)=c_1x_1(t)+c_2x_2(t)+...+c_nx_n(t)

The Attempt at a Solution


I have no idea how to start this since my teacher never covered this in our notes and the book doesn't give an example of this type of problem. Please help!
 
Physics news on Phys.org
Any one?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top